首页> 外文OA文献 >An improved search space resizing method for model identification by Standard Genetic Algorithm
【2h】

An improved search space resizing method for model identification by Standard Genetic Algorithm

机译:一种改进的基于标准遗传算法的模型识别搜索空间大小调整方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

.In this paper, a new improved search space boundary resizing method for an optimal model's parameter identification by Standard Genetic Algorithms (SGAs) is proposed and demonstrated. The premature convergence to local minima, as a result of search space boundary constraints, is a key consideration in the application of SGAs. The new method improves the convergence to global optima by resizing or extending the upper and lower search boundaries. The resizing of search space boundaries involves two processes, first, an identification of initial value by approximating the dynamic response period and desired settling time. Second, a boundary resizing method derived from the initial search space value. These processes brought the elite groups within feasible boundary regions by consecutive execution and enhanced the SGAs in locating the optimal model's parameters for the identified transfer function. This new method is applied and examined on two processes, a third order transfer function model with and without random disturbance and raw data of excess oxygen. The simulation results assured the new improved search space resizing method's efficiency and flexibility in assisting SGAs to locate optimal transfer function model parameters in their explorations. © 2015 Chinese Automation and Computing Society in the UK - CACS
机译:本文提出并证明了一种新的改进的搜索空间边界尺寸调整方法,该方法可通过标准遗传算法(SGA)识别最优模型的参数。由于搜索空间边界的限制,过早收敛到局部极小值是SGA应用中的关键考虑因素。通过调整大小或扩展上下搜索边界,新方法将收敛到全局最优。调整搜索空间边界的大小涉及两个过程,首先是通过近似动态响应周期和所需的建立时间来确定初始值。其次,从初始搜索空间值得出的边界调整大小方法。这些过程通过连续执行将精英群体带入了可行的边界区域,并在为识别出的传递函数确定最优模型参数的过程中增强了SGA。这种新方法在两个过程中得到应用和检验,一个是带有和不带有随机干扰的三阶传递函数模型,以及过量氧气的原始数据。仿真结果确保了新改进的搜索空间大小调整方法的效率和灵活性,可帮助SGA在其探索中找到最佳传递函数模型参数。 ©2015英国中国自动化和计算学会-CACS

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号