首页> 外文OA文献 >ICA Cleaning procedure for EEG signals analysis: application to Alzheimer's disease detection
【2h】

ICA Cleaning procedure for EEG signals analysis: application to Alzheimer's disease detection

机译:用于脑电信号分析的ICA清洁程序:在阿尔茨海默氏病检测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To develop systems in order to detect Alzheimer’s disease we want to use EEG signals. Available databaseis raw, so the first step must be to clean signals properly. We propose a new way of ICA cleaning on adatabase recorded from patients with Alzheimer's disease (mildAD, early stage). Two researchers visuallyinspected all the signals (EEG channels), and each recording's least corrupted (artefact-clean) continuous 20sec interval were chosen for the analysis. Each trial was then decomposed using ICA. Sources were orderedusing a kurtosis measure, and the researchers cleared up to seven sources per trial corresponding to artefacts(eye movements, EMG corruption, EKG, etc), using three criteria: (i) Isolated source on the scalp (only afew electrodes contribute to the source), (ii) Abnormal wave shape (drifts, eye blinks, sharp waves, etc.),(iii) Source of abnormally high amplitude (�100 �V). We then evaluated the outcome of this cleaning bymeans of the classification of patients using multilayer perceptron neural networks. Results are verysatisfactory and performance is increased from 50.9% to 73.1% correctly classified data using ICA cleaningprocedure.
机译:为了开发检测阿尔茨海默氏病的系统,我们希望使用EEG信号。可用的数据库是原始数据,因此第一步必须是正确清除信号。我们提出了一种对数据库进行ICA清洗的新方法,该数据库可以从患有阿尔茨海默氏病(mildAD,早期)的患者那里记录下来。两名研究人员目视检查了所有信号(EEG通道),并选择了每条记录的损坏最少(伪像干净)的连续20秒间隔进行分析。然后使用ICA分解每个试验。使用峰度测量法对来源进行排序,研究人员使用以下三个标准清除了与假象相对应的七个来源(眼球运动,EMG腐败,EKG等):(i)头皮上的孤立来源(仅极少数电极有助于(ii)异常波形(漂移,眨眼,尖锐的波浪等),(iii)异常高振幅(100 V)的信号源。然后,我们使用多层感知器神经网络对患者分类的这种清洁方式进行了评估。结果非常令人满意,并且使用ICA清洁程序将性能正确分类的数据从50.9%提高到73.1%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号