首页> 外文OA文献 >Novel single trial movement classification based on temporal dynamics of EEG
【2h】

Novel single trial movement classification based on temporal dynamics of EEG

机译:基于脑电时间动态的新型单次试验运动分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Various complex oscillatory processes are involved in the generation of the motor command. The temporal dynamics of these processes were studied for movement detection from single trial electroencephalogram (EEG). Autocorrelation analysis was performed on the EEG signals to find robust markers of movement detection. The evolution of the autocorrelation function was characterised via the relaxation time of the autocorrelation by exponential curve fitting. It was observed that the decay constant of the exponential curve increased during movement, indicating that the autocorrelation function decays slowly during motor execution. Significant differences were observed between movement and no moment tasks. Additionally, a linear discriminant analysis (LDA) classifier was used to identify movement trials with a peak accuracy of 74%.
机译:电动机命令的产生涉及各种复杂的振荡过程。研究了这些过程的时间动态,以便从单次试验脑电图(EEG)中检测运动。对EEG信号进行自相关分析,以找到运动检测的可靠标记。自相关函数的演化通过指数曲线拟合的自相关弛豫时间来表征。可以观察到,指数曲线的衰减常数在运动过程中增加,这表明自相关函数在电动机执行过程中衰减缓慢。观察到运动与没有瞬间任务之间存在显着差异。此外,线性判别分析(LDA)分类器用于识别运动试验,其峰值准确度为74%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号