首页> 外文OA文献 >Methodological implementation of mixed linear models in multi-locus genome-wide association studies
【2h】

Methodological implementation of mixed linear models in multi-locus genome-wide association studies

机译:多基因组全基因组关联研究中混合线性模型的方法学实施

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new algorithm. This algorithm whitens the covariance matrix of the polygenic matrix K and environmental noise, and specifies the number of nonzero eigenvalues as one. The model first chooses all putative quantitative trait nucleotides (QTNs) with ≤ 0.005 P-values and then includes them in a multi-locus model for true QTN detection. Owing to the multi-locus feature, the Bonferroni correction is replaced by a less stringent selection criterion. Results from analyses of both simulated and real data showed that FASTmrEMMA is more powerful in QTN detection and model fit, has less bias in QTN effect estimation and requires a less running time than existing single- and multi-locus methods, such as empirical Bayes, settlement of mixed linear model under progressively exclusive relationship (SUPER), efficient mixed model association (EMMA), compressed MLM (CMLM) and enriched CMLM (ECMLM). FASTmrEMMA provides an alternative for multi-locus GWAS.
机译:混合线性模型已广泛用于全基因组关联研究(GWAS),但尚未探索和评估其在多基因座GWAS分析中的应用。在这里,我们为GWAS实现了快速多位点随机SNP效应EMMA(FASTmrEMMA)模型。该模型基于随机单核苷酸多态性(SNP)效应和新算法构建。该算法使多基因矩阵K和环境噪声的协方差矩阵变白,并将非零特征值的数量指定为1。该模型首先选择所有假定的具有≤0.005P值的定量性状核苷酸(QTN),然后将它们包含在多位点模型中以进行真正的QTN检测。由于具有多位点功能,Bonferroni校正被不太严格的选择标准所取代。对模拟数据和实际数据的分析结果表明,与现有的单和多位点方法(例如经验贝叶斯方法)相比,FASTmrEMMA在QTN检测和模型拟合方面功能更强大,在QTN效果估算中的偏差更小,所需的运行时间更少。渐进排他关系(SUPER),有效混合模型关联(EMMA),压缩MLM(CMLM)和富集CMLM(ECMLM)下混合线性模型的解决。 FASTmrEMMA提供了多场所GWAS的替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号