首页> 外文OA文献 >Rigorous bounds on the nonlinear saturation of instabilities to parallel shear flows
【2h】

Rigorous bounds on the nonlinear saturation of instabilities to parallel shear flows

机译:平行剪切流不稳定性的非线性饱和的严格界限

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel method is presented for obtaining rigorous upper bounds on the finite-amplitude growth of instabilities to parallel shear flows on the beta-plane. The method relies on the existence of finite-amplitude Liapunov (normed) stability theorems, due to Arnol'd, which are nonlinear generalizations of the classical stability theorems of Rayleigh and Fjørtoft. Briefly, the idea is to use the finite-amplitude stability theorems to constrain the evolution of unstable flows in terms of their proximity to a stable flow. Two classes of general bounds are derived, and various examples are considered. It is also shown that, for a certain kind of forced-dissipative problem with dissipation proportional to vorticity, the finite-amplitude stability theorems (which were originally derived for inviscid, unforced flow) remain valid (though they are no longer strictly Liapunov); the saturation bounds therefore continue to hold under these conditions.
机译:提出了一种新颖的方法,用于获得不稳定性对β平面上的平行剪切流的不稳定性的有限幅度增长的严格上限。由于Arnol'd,该方法依赖于有限振幅Liapunov(范数)稳定性定理的存在,这是Rayleigh和Fjørtoft经典稳定性定理的非线性推广。简而言之,该想法是使用有限振幅稳定性定理,根据不稳定流与稳定流的接近程度来限制它们的演化。推导了两类通用边界,并考虑了各种示例。还表明,对于某种耗散与涡度成比例的强迫耗散问题,有限幅值稳定性定理(最初是为无粘性,无强迫流动而推导的)仍然有效(尽管它们不再严格地是Liapunov)。因此,饱和边界在这些条件下继续保持不变。

著录项

  • 作者

    Shepherd Theodore G.;

  • 作者单位
  • 年度 1988
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号