首页> 外文OA文献 >Comparative performance of complex-valued B-spline and polynomial models applied to iterative frequency-domain decision feedback equalization of Hammerstein channels
【2h】

Comparative performance of complex-valued B-spline and polynomial models applied to iterative frequency-domain decision feedback equalization of Hammerstein channels

机译:复数值B样条和多项式模型在Hammerstein通道迭代频域决策反馈均衡中的比较性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Complex-valued (CV) B-spline neural network approach offers a highly effective means for identifying and inverting practical Hammerstein systems. Compared with its conventional CV polynomial-based counterpart, a CV B-spline neural network has superior performance in identifying and inverting CV Hammerstein systems, while imposing a similar complexity. This paper reviews the optimality of the CV B-spline neural network approach. Advantages of B-spline neural network approach as compared with the polynomial based modeling approach are extensively discussed, and the effectiveness of the CV neural network-based approach is demonstrated in a real-world application. More specifically, we evaluate the comparative performance of the CV B-spline and polynomial-based approaches for the nonlinear iterative frequency-domain decision feedback equalization (NIFDDFE) of single-carrier Hammerstein channels. Our results confirm the superior performance of the CV B-spline-based NIFDDFE over its CV polynomial-based counterpart.
机译:复数值(CV)B样条神经网络方法为识别和求逆实际的Hammerstein系统提供了一种非常有效的方法。与传统的基于CV多项式的对应物相比,CV B样条神经网络在识别和求反CV Hammerstein系统方面具有优越的性能,同时具有类似的复杂性。本文综述了CV B样条神经网络方法的最优性。与基于多项式的建模方法相比,B样条神经网络方法的优点得到了广泛讨论,并且在实际应用中证明了基于CV神经网络的方法的有效性。更具体地说,我们评估了CV B样条和多项式方法在单载波Hammerstein通道的非线性迭代频域决策反馈均衡(NIFDDFE)中的比较性能。我们的结果证实了基于C样条B样条的NIFDDFE优于其基于CV多项式的同类产品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号