首页> 外文OA文献 >Bio-inspired ant colony optimization based clustering algorithm with mobile sinks for applications in consumer home automation networks
【2h】

Bio-inspired ant colony optimization based clustering algorithm with mobile sinks for applications in consumer home automation networks

机译:基于生物启发式蚁群优化的带有移动接收器的聚类算法,用于消费者家庭自动化网络中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the fast development of wireless communications, ZigBee and semiconductor devices, home automation networks have recently become very popular. Since typical consumer products deployed in home automation networks are often powered by tiny and limited batteries, one of the most challenging research issues is concerning energy reduction and the balancing of energy consumption across the network in order to prolong the home network lifetime for consumer devices. The introduction of clustering and sink mobility techniques into home automation networks have been shown to be an efficient way to improve the network performance and have received significant research attention.ududTaking inspiration from nature, this paper proposes an Ant Colony Optimization (ACO) based clustering algorithm specifically with mobile sink support for home automation networks. In this work, the network is divided into several clusters and cluster heads are selected within each cluster. Then, a mobile sink communicates with each cluster head to collect data directly through short range communications. The ACO algorithm has been utilized in this work in order to find the optimal mobility trajectory for the mobile sink. Extensive simulation results from this research show that the proposed algorithm significantly improves home network performance when using mobile sinks in terms of energy consumption and network lifetime as compared to other routing algorithms currently deployed for home automation networks.
机译:随着无线通信,ZigBee和半导体设备的快速发展,家庭自动化网络最近变得非常流行。由于部署在家庭自动化网络中的典型消费类产品通常由纤巧且数量有限的电池供电,因此最具挑战性的研究问题之一是如何降低能耗以及如何平衡网络中的能耗,从而延长消费类设备的家庭网络寿命。已证明将群集和接收器移动性技术引入家庭自动化网络是提高网络性能的有效方法,并受到了广泛的研究关注。 ud ud从自然界中汲取灵感,提出了蚁群优化(ACO)基于集群的算法,特别是对家庭自动化网络的移动接收器的支持。在这项工作中,网络被分为几个群集,并且在每个群集中选择了群集头。然后,移动接收器与每个群集头进行通信,以通过短距离通信直接收集数据。在这项工作中已经使用了ACO算法,以便找到移动宿的最佳移动性轨迹。这项研究的大量仿真结果表明,与目前部署在家庭自动化网络中的其他路由算法相比,该算法在使用移动接收器时,在能耗和网络寿命方面均显着提高了家庭网络性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号