首页> 外文OA文献 >ATOMISTIC MODELING OF PHONON BANDSTRUCTURE AND TRANSPORT FOR OPTIMAL THERMAL MANAGEMENT IN NANOSCALE DEVICES
【2h】

ATOMISTIC MODELING OF PHONON BANDSTRUCTURE AND TRANSPORT FOR OPTIMAL THERMAL MANAGEMENT IN NANOSCALE DEVICES

机译:纳米尺度器件的声带结构和传输的原子模型,用于最佳热管理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Monte Carlo based statistical approach to solve Boltzmann Transport Equation (BTE) has become a norm to investigate heat transport in semiconductors at sub-micron regime, owing mainly to its ability to characterize realistically sized device geometries qualitatively. One of the primary issues with this technique is that the approach predominantly uses empirically fitted phonon dispersion relations as input to determine the properties of phonons so as to predict the thermal conductivity of specified material geometry. The empirically fitted dispersion relations assume harmonic approximation thereby failing to account for thermal expansion, interaction of lattice waves, effect of strain on spring stiffness, and accurate phonon-phonon interaction. To circumvent this problem, in this work, a coupled molecular mechanics-Monte Carlo (MM-MC) platform has been developed and used to solve the phonon Boltzmann Transport Equation (BTE) for the calculation of thermal conductivity of several novel and emerging nanostructures. The use of the quasi-anharmonic MM approach (as implemented in the open source NEMO 3-D software toolkit) not only allows one to capture the true atomicity of the underlying lattice but also enables the simulation of realistically-sized structures containing millions of atoms. As compared to the approach using an empirically fitted phonon dispersion relation, here, a 17% increase in the thermal conductivity for a silicon nanowire due to the incorporation of atomistic corrections in the LA (longitudinal acoustic) branch alone has been reported. The atomistically derived thermal conductivity as calculated from the MM-MC framework is then used in the modular design and analysis of (i) a silicon nanowire based thermoelectric cooler (TEC) unit, and (ii) a GaN/InN based nanostructured light emitting device (LED). It is demonstrated that the use of empirically fitted phonon bandstructure parameters overestimates the temperature difference between the hot and the cold sides and the overall cooling efficiency of the system, thereby, demanding the use of the BTE derived thermal conductivity in the calculation of thermal conductivity. In case of the light-emitting device, the microscopically derived material parameters, as compared to their bulk and fitted counterparts, yielded ~3% correction (increase) in optical efficiency. A non-deterministic approach adopted in this work, therefore, provides satisfactory results in what concerns phonons transport in both ballistic and diffusive regimes to understand and/predict the heat transport phenomena in nanostructures.
机译:基于蒙特卡洛的统计方法来解决玻尔兹曼输运方程(BTE),已成为研究亚微米状态下半导体中热传递的一种规范,这主要是由于其具有定性表征实际尺寸的器件几何形状的能力。该技术的主要问题之一是该方法主要使用经验拟合的声子色散关系作为输入来确定声子的性质,从而预测指定材料几何形状的导热率。根据经验拟合的色散关系采用谐波近似,因此无法考虑热膨胀,晶格波的相互作用,应变对弹簧刚度的影响以及精确的声子-声子相互作用。为了解决这个问题,在这项工作中,已经开发了一个耦合的分子力学-蒙特卡罗(MM-MC)平台,用于求解声子玻耳兹曼输运方程(BTE),以计算几种新颖的和新兴的纳米结构的热导率。准非谐波MM方法(在开源NEMO 3-D软件工具包中实现)的使用不仅可以捕获基本晶格的真实原子性,还可以模拟包含数百万个原子的实际大小的结构。与使用经验拟合的声子色散关系的方法相比,在这里,由于仅在LA(纵向声波)分支中引入了原子校正,因此硅纳米线的热导率增加了17%。从MM-MC框架计算得出的原子导出的热导率然后用于(i)基于硅纳米线的热电冷却器(TEC)单元和(ii)基于GaN / InN的纳米结构的发光器件的模块化设计和分析(发光二极管)。结果表明,使用经验拟合的声子能带结构参数会过高估计热侧和冷侧之间的温差以及系统的整体冷却效率,从而要求在计算热导率时使用BTE导出的热导率。在发光装置的情况下,与它们的体积和装配的对应物相比,微观得出的材料参数在光学效率上产生了约3%的校正(增加)。因此,在这项工作中采用的非确定性方法在涉及声子在弹道和扩散区中的传运中提供了令人满意的结果,以理解和/或预测纳米结构中的传热现象。

著录项

  • 作者

    Sundaresan Sasi Sekaran;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号