首页> 外文OA文献 >Automated visual fruit detection for harvest estimation and robotic harvesting
【2h】

Automated visual fruit detection for harvest estimation and robotic harvesting

机译:自动化的可视化水果检测,用于收获估计和机器人收获

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fully automated detection and localisation of fruit in orchards is a key component in creating automated robotic harvesting systems, a dream of many farmers around the world to cope with large production and personnel costs. In recent years a lot of research on this topic has been performed, using basic computer vision techniques, like colour based segmentation, as a suggested solution. When not using standard RGB cameras, research tends to resort to other sensors, like hyper spectral or 3D. Recent advances in computer vision present a broad range of advanced object detection techniques that could improve the quality of fruit detection from RGB images drastically. We suggest to use a object categorisation technique based on a boosted cascade of weak classifiers to implement a fully automated semi-supervised fruit detector and demonstrate it on both strawberries and apples. Compared to existing techniques we improve fruit detection, mainly in the case of fruit clusters, using a supervised machine learning instead of hand crafting image filters specific to the application. Moreover we integrate application specific colour information to ensure a more stable output of our fully automated detection algorithm. The developed technique is validated on strawberries and apples and is proven to have large benefits in the field of automated harvest and crop estimation.
机译:果园中水果的全自动检测和定位是创建自动化机器人收割系统的关键组成部分,这是全世界许多农民应对庞大生产和人工成本的梦想。近年来,已经使用基本的计算机视觉技术(例如基于颜色的分割)作为建议的解决方案,对此主题进行了大量研究。当不使用标准RGB相机时,研究倾向于求助于其他传感器,例如高光谱或3D。计算机视觉的最新进展提出了各种各样的高级对象检测技术,这些技术可以极大地提高从RGB图像中检测水果的质量。我们建议使用基于弱分类器的增强级联的对象分类技术来实现全自动的半监督水果检测器,并在草莓和苹果上进行演示。与现有技术相比,我们改进了水果检测,主要是在水果簇的情况下,使用有监督的机器学习代替了针对应用程序的手工图像过滤器。此外,我们集成了特定于应用程序的颜色信息,以确保我们全自动检测算法的输出更加稳定。该开发的技术已在草莓和苹果上得到验证,并被证明在自动收获和农作物估计领域具有巨大的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号