首页> 外文OA文献 >Analyzing the potential of GPGPUs for real-time explicit finite element analysis of soft tissue deformation using CUDA
【2h】

Analyzing the potential of GPGPUs for real-time explicit finite element analysis of soft tissue deformation using CUDA

机译:使用CUDA分析GPGPU对软组织变形进行实时显式有限元分析的潜力

摘要

As the presence of finite element implementations on General Purpose Graphics Processing Units (GPGPUs) is the literature increases, detailed and in-breadth testing of the hardware is somewhat lacking. We present an implementation and detailed analysis of an FE algorithm designed for real-time solution, particularly aimed at elasticity problems applied to soft tissue deformation. An efficient parallel implementation of Total Lagrangian Explicit Dynamics implementation is elucidated and the potential for real-time execution is examined. It is shown that in conjunction with modern computing architectures, solution times can be significantly reduced, depending on the solution strategy. The usability of the method is investigated by conducting a broad assay on ranging model sizes and different cards and comparing to an industry-proven FE code Abaqus. In doing so, we study the effect of using single/double precision computation, quantify and present error measurements as a function of the number of time-steps. We also examine the usage of a special texture memory space and its effect on computation for different devices. Adding material complexity in the form of a tissue damage model is presented and its computational impact elucidated. The aggregate results show that, for a particular set of problems, it is possible to compute a simple set of test cases 30-250 times faster than current commercial solutions. According to the speedups achieved, an indication is provided that the GPGPU technology shows promise in the undertaking of real-time FE computation.
机译:随着通用图形处理单元(GPGPU)上有限元实现的出现,文献不断增加,因此在某种程度上缺乏对硬件的详细测试和深度测试。我们提出了一种针对实时解决方案而设计的有限元算法的实现和详细分析,特别是针对应用于软组织变形的弹性问题。阐明了总拉格朗日显式动力学实现的有效并行实现,并研究了实时执行的潜力。结果表明,结合现代计算体系结构,可以根据解决方案策略显着减少解决方案时间。通过对各种型号的尺寸和不同的卡片进行广泛的分析,并与业界公认的FE代码Abaqus进行比较,研究了该方法的可用性。在此过程中,我们研究了使用单精度/双精度计算的效果,量化并给出了误差测量值随时间步长变化的函数。我们还将检查特殊纹理存储空间的使用及其对不同设备计算的影响。提出了以组织损伤模型的形式增加材料的复杂性,并阐明了其计算影响。总体结果表明,对于一组特定的问题,有可能比目前的商业解决方案快30-250倍地计算一组简单的测试用例。根据获得的加速,表明GPGPU技术在实时FE计算中显示出了希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号