首页> 外文OA文献 >Een intelligente experimentele aanpak voor de optimalisatie van de procesparameters voor het thermovormen van kunststoffen en composieten
【2h】

Een intelligente experimentele aanpak voor de optimalisatie van de procesparameters voor het thermovormen van kunststoffen en composieten

机译:优化塑料和复合材料热成型工艺参数的智能实验方法

摘要

Commercial thermoforming as known today began about 75 years ago. Unlike other major thermoplastic production processes such as injection moulding and extrusion that went through significant technological improvements, thermoforming on an industrial scale still remains a processing technique that is mainly based on operator experience and trial and error. The reason for this is mainly the lack of knowledge on the influence of process parameters and surrounding conditions on the material behaviour.Insight in thin gauge thermoforming, a thermoforming variant for the processing of thin sheets and foils that is mainly applied in the packaging industry, has recently been improved by the introduction of in-mould monitoring systems. These systems allow for an in-situ measurement of among others: pressures, temperatures, positions and forming forces. In heavy gauge thermoforming however, such tools are not yet available. Typically, the quality of heavy gauge products is assessed on the basis of (manual) tactile, point by point thickness measurements in cross sections or parts of the final product. This makes it hard to define the relation between a specific process setting and the resulting thickness distribution, influenced by all (non-ideal) boundary conditions.In this thesis, an experimental methodology to increase process insight in heavy gauge thermoforming is developed and validated using in-situ, full-field measurements of deformations, combined with pressure and temperature measurements. First, the specific details on how to apply the methodology in thermoforming applications are thoroughly elaborated. Next, it is demonstrated that the use of the methodology provides valuable insights in every step of the thermoforming process and that the proposed approach allows to define the process settings that are responsible for the quality of the final product. Besides this direct benefit, the approach can also be used to (i) identify specific thermoforming simulation parameters, (ii) establish the link between simulation and process parameters and (iii) facilitate the comparison of simulation results with results from production.From an industrial point of view and with the increasing urge for automation it is clear that this enhanced insight into the process and the possibility to more accurately execute simulations can make heavy gauge thermoforming more stable, reduce start-up and cycle times and minimize the need for operator experience.
机译:今天已知的商业热成型大约在75年前开始。与其他主要的热塑性塑料生产工艺(例如注塑成型和挤出成型)经历了重大的技术改进不同,工业规模的热成型仍然是一种主要基于操作员经验和反复试验的加工技术。其原因主要是缺乏对工艺参数和周围条件对材料性能的影响的知识。薄壁热成型的见解,一种用于加工薄板和箔的热成型方法,主要用于包装行业,最近,通过引入模内监控系统进行了改进。这些系统允许就地测量压力,温度,位置和成形力等。但是,在大规格热成型中,此类工具尚不可用。通常,基于最终产品的横截面或部分中的(手动)触觉,逐点厚度测量来评估重规格产品的质量。这使得很难定义受所有(非理想)边界条件影响的特定工艺设置与所得到的厚度分布之间的关系。在本文中,本文开发了一种实验方法,用以提高大规格热成型过程的工艺洞察力。原位,全场变形测量,以及压力和温度测量。首先,详细阐述了如何在热成型应用中应用该方法的具体细节。接下来,证明了该方法的使用在热成型过程的每个步骤中提供了宝贵的见解,并且所提出的方法允许定义负责最终产品质量的过程设置。除了这种直接的好处外,该方法还可以用于(i)识别特定的热成型仿真参数,(ii)在仿真和工艺参数之间建立联系,并且(iii)便于将仿真结果与生产结果进行比较。观点以及对自动化的不断增长的需求,很显然,这种对过程的深刻洞察以及更准确地执行模拟的可能性可以使大规格热成型更加稳定,减少启动和周期时间,并最大限度地减少对操作员经验的需求。

著录项

  • 作者

    Van Mieghem Bart;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号