首页> 外文OA文献 >A Jacobi-Davidson method for two real parameter nonlinear eigenvalue problems arising from delay differential equations
【2h】

A Jacobi-Davidson method for two real parameter nonlinear eigenvalue problems arising from delay differential equations

机译:求解由时滞微分方程引起的两个实参非线性特征值问题的Jacobi-Davidson方法

摘要

The critical delays of a delay-differential equation can be computed by solving a nonlinear two-parameter eigenvalue problem. The solution of this two-parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR-type method for solving such quadratic eigenvalue problem that only computes real valued critical delays, i.e. complex critical delays, which have no physical meaning, are discarded. For large scale problems, we propose new correction equations for a Newton type or Jacobi-Davidson style method, that also forces real valued critical delays. We present three different equations: one real valued equation using a direct linear system solver, one complex valued equation using a direct linear system solver, and one Jacobi-Davidson style correction equation which is suitable for an iterative linear system solver.We show numerical examples for large scale problems arising from PDEs.
机译:可以通过解决非线性两参数特征值问题来计算时滞微分方程的临界时滞。可以将这个两参数问题的解决方案转换为平方的平方本征值问题。我们提出了一种保留结构的QR型方法来解决这种二次特征值问题,该方法仅计算实际值的关键延迟,即没有物理意义的复杂关键延迟被丢弃。对于大规模问题,我们为牛顿型或雅可比-戴维森(Jacobi-Davidson)风格的方法提出了新的校正方程,这也强制了实际值的临界延迟。我们给出了三种不同的方程:一个使用直接线性系统求解器的实值方程,一个使用直接线性系统求解器的复值方程以及一个适用于迭代线性系统求解器的Jacobi-Davidson样式校正方程。用于由PDE引起的大规模问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号