In statistical NLP, Semantic Vector Spaces (SVS) are the standard technique for the automatic modeling of lexical semantics. However, it is largely unclear how these black-box techniques exactly capture word meaning. To explore the way an SVS structures the individual occurrences of words, we use a non-parametric MDS solution of a token-by-token similarity matrix. The MDS solution is visualized in an interactive plot with the Google Chart Tools. As a case study, we look at the occurrences of 476 Dutch nouns grouped in 214 synsets.
展开▼