首页> 外文OA文献 >Size matters: tight and loose context definitions in English word space models
【2h】

Size matters: tight and loose context definitions in English word space models

机译:大小很重要:英语单词空间模型中的紧密和松散上下文定义

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Word Space Models use distributional similarity between two words as a measure of their semantic similarity or relatedness. This distributional similarity, however, is influenced by the type of context the models take intoaccount. Context definitions range on a continuum from tight to loose, depending on the size of the context window around the target or the order of the context words that are considered. This paper investigates whether two generalways of loosening the context definition — by extending the context size from one to ten words, and by taking into account second-order context words — produce equivalent results. In particular, we will evaluate the performanceof the models in terms of their ability (1) to discover semantic word classes and (2) to mirror human associations.
机译:词空间模型使用两个词之间的分布相似性来衡量其语义相似性或相关性。但是,这种分布相似性受模型考虑的上下文类型的影响。上下文定义的范围从紧密到松散,取决于目标周围上下文窗口的大小或所考虑的上下文词的顺序。本文研究了两种松散上下文定义的通用方法(通过将上下文大小从一词扩展到十个词并考虑二阶上下文词)是否产生了等效的结果。特别地,我们将根据模型的能力(1)发现语义词类和(2)反映人类联想的能力来评估模型的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号