首页> 外文OA文献 >User-Adapted Plan Recognition and Shared Control for Wheelchair Driver Assistance under Unvertainty
【2h】

User-Adapted Plan Recognition and Shared Control for Wheelchair Driver Assistance under Unvertainty

机译:不确定情况下用户适应的轮椅驾驶员辅助计划识别和共享控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Elderly and physically impaired people constitute a continuously growing section of the world's population. A considerable part of this population group experiences mobility problems, even when using existing assistive devices such as powered wheelchairs and walkers. This reduces their quality of life substantially. Consequently, several research groups have decided to equip existing mobility devices with additional sensing andcomputing power in order to ease navigation and to reduce the number ofaccidents. This thesis focuses on the control and estimation algorithmsbehind such assistive robots. Powered wheelchairs are adopted as a testcase. In order to assist wheelchair drivers, the computer should know which manoeuvre the user desires to execute. However, with traditional wheelchair interfaces it is difficult to accurately specify the task the robot should execute. Consequently, the user's navigation plans are uncertain and should be recognised . Based on the estimated plans, the computer decides to which degree users should be assisted. Thisway, user and computer share control over the assistive robot. Furthermore, each wheelchair driver controls a wheelchair in a different manner, and user signals are not completely predictable and repeatable. Therefore, it is important for the control and estimationalgorithms to take uncertainty on user signals into account, as well asindividual driving characteristics.This work presents an approach to user-adapted plan recognition and user-adapted shared control that is different from previous approaches in three distinct ways. First, user plans are represented as trajectories from the current robot location to a goal location. This representation allows to estimate and model any complex driving manoeuvre. Second, uncertainty regarding user plans, user signals, and sensor signals is explicitly dealt with both during plan recognition and during shared control. A Bayesian approach is adopted to merge past and present information regarding the uncertain user plans. The probability distribution that resultsfrom merging past and present information regarding user plans may be multi-modal. Despite this multi-modal distribution, it should be continuously decided which robot actions are most appropriate. Three approaches were proposed and validated to make these assistive decisions under uncertainty, a Maximum Likelihood approach, a Maximum A Posteriori approach,and a greedy Partially Observable Markov Decision Process. Third, a keyelement in the approach is a user model that determines how probable the user's steering signals are under the assumption that the user wants to track a given mental trajectory. This user model can incorporate user-specific characteristics. The approach was validated through experimentswith a joystick interface and button interfaces, both in simulation andon a real wheelchair platform.
机译:老年人和肢体残障人士占世界人口的比例不断增长。即使使用现有的辅助设备(如电动轮椅和助步车),该人群中仍有相当一部分会遇到行动不便的问题。这大大降低了他们的生活质量。因此,几个研究小组决定为现有的移动设备配备额外的传感和计算能力,以简化导航并减少事故数量。本文主要研究这类辅助机器人背后的控制和估计算法。电动轮椅被用作测试用例。为了协助轮椅驾驶员,计算机应知道用户希望执行哪种操作。但是,使用传统的轮椅接口时,很难准确指定机器人应执行的任务。因此,用户的导航计划是不确定的并且应该被识别。根据估计的计划,计算机决定应为用户提供何种程度的帮助。这样,用户和计算机可以共享对辅助机器人的控制。此外,每个轮椅驾驶员以不同的方式控制轮椅,并且用户信号不是完全可预测和可重复的。因此,控制和估计算法必须考虑到用户信号的不确定性以及个体驾驶特性,这一点很重要。这项工作提出了一种与用户适应的计划识别和用户适应的共享控制方法,该方法不同于之前的方法中的三个不同的方式。首先,将用户计划表示为从当前机器人位置到目标位置的轨迹。这种表示可以估算和建模任何复杂的驾驶行为。其次,在计划识别期间和共享控制期间都明确处理了有关用户计划,用户信号和传感器信号的不确定性。采用贝叶斯方法来合并关于不确定用户计划的过去和当前信息。由合并关于用户计划的过去和当前信息而产生的概率分布可以是多模式的。尽管有这种多模式分布,但应连续确定哪种机器人动作最合适。提出并验证了三种在不确定性条件下做出辅助决策的方法:最大似然方法,最大后验方法和贪婪的部分可观察的马尔可夫决策过程。第三,该方法中的关键要素是一个用户模型,该模型确定了在用户想要跟踪给定心理轨迹的假设下用户的转向信号的可能性。该用户模型可以包含用户特定的特征。该方法已通过仿真和真实轮椅平台上的操纵杆界面和按钮界面的实验验证。

著录项

  • 作者

    Demeester Eric;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 nl
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号