首页> 外文OA文献 >Collaboration-based social tag prediction in the graph of annotated web pages
【2h】

Collaboration-based social tag prediction in the graph of annotated web pages

机译:带注释的网页图形中基于协作的社交标签预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Different approaches based on content or tag information have been proposed to address the problem of tag recommendation for a web page. In this paper, we analyze two approaches in a graph of web pages. Each node is a web page and edges represent hyperlinks. The first approach uses the content while the second one uses tag information in the graph. The second approach makes two assumptions about the tag set of two interacting nodes. The Tag Similarity Assumption claims that two interacting nodes discuss about rather similar topics; therefore, the chance of having more similar tag set is higher. The Tag Collaboration Assumption says that two interacting nodes complement each others topics. We apply algorithms such as Self Organizing Map (SOM), Reinforcement Learning (RL) and K-means clustering to compare methods on several datasets. We conclude that tag-based tag predictors outperform their content-based peers by more than ten percent with respect to the cosine similarity between predicted and actual tag sets.
机译:已经提出了基于内容或标签信息的不同方法来解决网页的标签推荐的问题。在本文中,我们分析网页图形中的两种方法。每个节点都是一个网页,边缘代表超链接。第一种方法使用内容,而第二种方法使用图形中的标记信息。第二种方法对两个交互节点的标签集做出两个假设。标签相似性假设声称两个相互作用的节点讨论了相当相似的主题。因此,具有更多相似标签集的机会更高。标签协作假设说,两个交互节点互为补充。我们应用自组织图(SOM),强化学习(RL)和K-means聚类等算法来比较多个数据集上的方法。我们得出结论,就预测和实际标签集之间的余弦相似性而言,基于标签的标签预测变量的性能比其基于内容的同类变量高出百分之十以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号