首页> 外文OA文献 >On generalized Gaussian quadrature rules for singular and nearly singular integrals
【2h】

On generalized Gaussian quadrature rules for singular and nearly singular integrals

机译:关于奇异积分和近似奇异积分的广义高斯正交规则

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We construct and analyze generalized Gaussian quadrature rules for integrands with endpoint singularities or near endpoint singularities. The rules have quadrature points inside the interval of integration and the weights are all strictly positive. Such rules date back to the study of Chebyshev sets, but their use in applications has only recently been appreciated. We provide error estimates and we show that the convergence rate is unaffected by the singularity of the integrand. We characterize the quadrature rules in terms of two families of functions that share many properties with orthogonal polynomials, but that are orthogonal with respect to a discrete scalar product that in most cases is not known a priori.
机译:我们构造和分析具有端点奇异点或接近端点奇异点的被积数的广义高斯正交规则。规则在积分间隔内具有正交点,并且权重均严格为正。此类规则可以追溯到Chebyshev集的研究,但直到最近才在应用程序中使用它们。我们提供误差估计,并且我们证明收敛速度不受被积数奇异性的影响。我们用两个函数族来表征正交规则,这两个函数族与正交多项式具有许多特性,但是它们相对于离散标量积是正交的,而在大多数情况下这些离散标量积不是先验的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号