首页> 外文OA文献 >Learning directed probabilistic logical models: Ordering-search versus structure-search
【2h】

Learning directed probabilistic logical models: Ordering-search versus structure-search

机译:学习指导的概率逻辑模型:顺序搜索与结构搜索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We discuss how to learn non-recursive directed probabilistic logical models from relational data. This problem has been tackled before by upgrading the structure-search algorithm initially proposed for Bayesian networks. In this paper we show how to upgrade another algorithm for learning Bayesian networks, namely ordering-search. For Bayesian networks, ordering-search was found to work better than structure-search. It is non-obvious that these results carry over to the relational case, however, since there ordering-search needs to be implemented quite differently. Hence, we perform an experimental comparison of these upgraded algorithms on four relational domains. We conclude that also in the relational case ordering-search is competitive with structure-search in terms of quality of the learned models, while ordering-search is significantly faster.
机译:我们讨论如何从关系数据中学习非递归定向概率逻辑模型。以前,通过升级最初为贝叶斯网络提出的结构搜索算法来解决此问题。在本文中,我们展示了如何升级用于学习贝叶斯网络的另一种算法,即排序搜索。对于贝叶斯网络,发现顺序搜索比结构搜索更好地工作。显然,这些结果会延续到关系情况下,因为排序搜索需要以完全不同的方式实现。因此,我们在四个关系域上对这些升级算法进行了实验比较。我们得出结论,在关系案例中,就学习模型的质量而言,排序搜索与结构搜索竞争,而排序搜索则明显更快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号