首页> 外文OA文献 >CFD analysis of the impact of physical parameters on evaporative cooling by a mist spray system
【2h】

CFD analysis of the impact of physical parameters on evaporative cooling by a mist spray system

机译:CFD分析物理参数对喷雾系统蒸发冷却的影响

摘要

The evaporation of droplets in a turbulent two-phase flow is of importance in many engineering applications. Water droplet evaporation in spray systems, for example, is increasingly used in public spaces and near building surfaces to achieve immediate cooling and enhance the thermal comfort in indoor and outdoor environments. The complex two-phase flow in such a system is influencedby many parameters such as continuous phase velocity, temperature and relative humidity, drop size distribution, velocity and temperature of the droplets and continuous phase-droplet and droplet-droplet interactions. Most of these parameters are not easily varied independently. To gain insight into the performance of the system, however, detailed knowledge of the impact of every parameter is important. Computational Fluid Dynamics (CFD) is a useful tool for performing such parametric analyses. To thebest of our knowledge, a detailed analysis of the cooling performance of a water spray system under different physical conditions has not yet been performed. This paper provides a systematic parametric analysis of the evaporative cooling provided by a water spray system with a hollow-cone nozzle configuration. The analysis is based on grid-sensitivity analysis and validation with wind-tunnelmeasurements. The impact of several physical parameters is investigated: inlet air temperature, inlet air humidity ratio, inlet air velocity, inlet water temperature and inlet droplet size distribution. The results show that for a given value of inlet water temperature (35.2 °C), as the temperature difference between the inlet air and the inlet water droplets increases from 0 °C to 8 °C, the sensible cooling capacity of the system improves by more than 40%. In addition, injecting water droplets with a temperature higher than the dry-bulb temperature of the air can still provide cooling, although the amount of cooling reducesconsiderably compared to the case with water at lower temperatures. It is also shown that as D , the meanof the Rosin-Rammler distribution, is reduced from 430 to 310 μm, the cooling performance of the system is improved by more than 110%. For a given value of D , the cooling is enhanced for wider drop-size distributions.
机译:在许多工程应用中,湍流两相流中液滴的蒸发非常重要。例如,喷雾系统中的水滴蒸发越来越多地用于公共场所和建筑物表面附近,以实现即时冷却并增强室内和室外环境的热舒适性。在这样的系统中,复杂的两相流受许多参数的影响,例如连续相速度,温度和相对湿度,液滴大小分布,液滴的速度和温度以及连续相-液滴和液滴-液滴的相互作用。这些参数中的大多数都不容易独立改变。但是,要深入了解系统的性能,了解每个参数的影响非常重要。计算流体力学(CFD)是执行此类参数分析的有用工具。据我们所知,尚未对喷水系统在不同物理条件下的冷却性能进行详细分析。本文提供了带有空心圆锥形喷嘴配置的喷水系统提供的蒸发冷却的系统参数分析。该分析基于电网敏感性分析和风洞测量的验证。研究了几个物理参数的影响:进气温度,进气湿度比,进气速度,进气温度和进气液滴尺寸分布。结果表明,对于给定的进水温度值(35.2°C),随着进风和进水水滴之间的温差从0°C增大到8°C,系统的显着冷却能力提高了:超过40%。此外,注入的温度高于空气干球温度的水滴仍然可以提供冷却,尽管与使用较低温度的水相比,冷却量明显减少。还表明,随着Rosin-Rammler分布的平均值D从430减小到310μm,系统的冷却性能提高了110%以上。对于给定的D值,冷却得到增强,液滴尺寸分布更宽。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号