首页> 外文OA文献 >Associating optical measurements of MEO and GEO objects using Population-Based Meta-Heuristic methods
【2h】

Associating optical measurements of MEO and GEO objects using Population-Based Meta-Heuristic methods

机译:使用基于种群的元启发式方法关联MEO和GEO对象的光学测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. The problem faced in this framework is that of Multiple Target Tracking (MTT). The MTT problem quickly becomes an NP-hard combinatorial optimization problem. This means that the effort required to solve the MTT problem increases exponentially with the number of tracked objects. In an attempt to find an approximate solution of sufficient quality, several Population-Based Meta-Heuristic (PBMH) algorithms are imple-udmented and tested on simulated optical measurements. These first results show that one of the tested algorithms, namely the Elitist Genetic Algorithm (EGA), consistently displays the desired behavior of finding good approximate solutions before reaching the optimum. The results further suggest that the algorithm possesses a polynomial time complexity, as the computation times are consistent with a polynomial model. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expectedudthat the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the association and orbit determination problems simultaneously, and is able to efficiently process large data sets with minimal manual intervention.
机译:当前,正在通过光学手段在MEO和GEO区域中跟踪数千个对象。在此框架中面临的问题是多目标跟踪(MTT)。 MTT问题很快就变成了NP-hard组合优化问题。这意味着解决MTT问题所需的工作量随跟踪对象的数量呈指数增加。为了找到足够质量的近似解决方案,实施了几种基于人口的元启发式(PBMH)算法,并在模拟光学测量中对其进行了测试。这些最初的结果表明,其中一种经过测试的算法,即Elitist遗传算法(EGA),始终显示出在达到最佳值之前找到好的近似解的理想行为。结果进一步表明,该算法具有多项式时间复杂度,因为计算时间与多项式模型一致。随着传感器的改进和对空间碎片问题的浓厚兴趣,可以预见的是,在不久的将来,被跟踪物体的数量将增加一个数量级。这项研究旨在提供一种可以同时处理关联和轨道确定问题的方法,并且能够以最少的人工干预有效地处理大型数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号