首页> 外文OA文献 >Sleep apnea classification using least-squares support vector machines on single lead ECG
【2h】

Sleep apnea classification using least-squares support vector machines on single lead ECG

机译:在单导联心电图上使用最小二乘支持向量机进行睡眠呼吸暂停分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper a methodology to identify sleep apnea events is presented. It uses four easily computable features, three generally known ones and a newly proposed feature. Of the three well known parameters, two are computed from the RR interval time series and the other one from the approximate respiratory signal derived from the ECG using principal component analysis (PCA). The fourth feature is proposed in this paper and it is computed from the principal components of the QRS complexes. Together with a least squares support vector machines (LS-SVM) classifier using an RBF kernel, these four features achieve an accuracy on test data larger than 85% for a subject independent classification, and of more than 90% for a patient specific approach. These values are comparable with other results in the literature, but have the advantage that their computation is straightforward and much simpler. This can be important when implemented in a home monitoring system, which typically has limited computational resources.
机译:在本文中,提出了一种识别睡眠呼吸暂停事件的方法。它使用了四个易于计算的功能,三个众所周知的功能和一个新提出的功能。在三个众所周知的参数中,两个是从RR间隔时间序列中计算出来的,另一个是从使用主成分分析(PCA)从ECG得出的近似呼吸信号中得出的。本文提出了第四个特征,它是根据QRS复合体的主要成分计算得出的。结合使用RBF内核的最小二乘支持向量机(LS-SVM)分类器,这四个功能对受试者独立分类的测试数据的准确性大于85%,对于患者特定方法的准确性超过90%。这些值可以与文献中的其他结果进行比较,但是具有以下优点:它们的计算简单明了。当在通常具有有限计算资源的家庭监视系统中实施时,这可能很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号