首页> 外文OA文献 >Een computationeel platform voor individuele cel-gebaseerde modellen van zelforganizatie bij gist over mechanica van rode bloedcellen tot een generisch celmodel
【2h】

Een computationeel platform voor individuele cel-gebaseerde modellen van zelforganizatie bij gist over mechanica van rode bloedcellen tot een generisch celmodel

机译:一个基于细胞模型的计算平台,从酵母在红细胞力学上的自组织到通用细胞模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The functioning of a biological tissue in many cases crucially depends on the mechanics at the cellular scale. This is shown in several example systems. Firstly, for a system of two phenotypes of yeast cells, which are adhesive and non-adhesive respectively, sorting occurs yielding a structure, in which the more adhesive cells are on the inside whereas the non-adhesive cells are on the outside. The Young’s modulus of the two strains was measured in atomic force microscopy experiments showing no difference between the strains. Compared to the results of an individual cell-based model it is found that the difference in adhesion in combination with Brownian motion and the locality of growth of new cells suffices to explain the emergence of this shell-like structure.In a second case, it is shown that the dynamics of initial cell spreading can be understood as a result of adhesion and dissipative forces at work on the interface of the developing contact plane. Especially for red blood cells, the model perfectly captures the experimental observations of two distinct experiments from the literature. A new deformable cell model with mechanistic contact interactions has been introduced to capture the developing adhesive contact. This model can be generalized to other cell types and applications in the field of individual cell-based models. To simulate these and a wide variety of similar models, a C++ software platform with a python interface has been developed and its usefulness proven by above mentioned examples. It has been more widely applied together with colleagues to develop models for microcarrier cell expansion and a new formulation of the smoothed particle hydrodynamics method for low Reynolds numbers called NSPH.
机译:在许多情况下,生物组织的功能至关重要地取决于细胞尺度的力学。这在几个示例系统中显示。首先,对于分别具有粘附性和非粘附性的两种酵母细胞表型的系统,进行分选产生一种结构,其中更多的粘附性细胞在内部而非粘附性细胞在外部。在原子力显微镜实验中测量了两种菌株的杨氏模量,结果表明两种菌株之间没有差异。与基于单个细胞的模型的结果相比,发现布朗运动与粘附力的差异以及新细胞生长的位置足以解释这种壳状结构的出现。结果表明,初始细胞扩散的动力学可以理解为在显影接触平面界面上工作时的粘附力和耗散力的结果。特别是对于红细胞,该模型完美地记录了文献中两个截然不同的实验的实验观察结果。引入了具有机械性接触相互作用的新的可变形细胞模型,以捕获发展中的粘合剂接触。该模型可以推广到基于单个单元的模型领域中的其他单元类型和应用。为了模拟这些模型以及各种各样的相似模型,已经开发了具有python接口的C ++软件平台,其有效性已通过上述示例得到了证明。它已与同事一起得到更广泛的应用,以开发用于微载体细胞扩增的模型和用于低雷诺数的平滑粒子流体动力学方法的新公式,称为NSPH。

著录项

  • 作者

    Odenthal Tim;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号