首页> 外文OA文献 >Energy requirements for the continuous biohydrogen production from Spirogyra biomass in a sequential batch reactor
【2h】

Energy requirements for the continuous biohydrogen production from Spirogyra biomass in a sequential batch reactor

机译:连续分批反应器中从螺旋藻生物质连续生产生物氢的能源需求

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The current energy market requires urgent revision for the introduction of renewable, less-polluting and inexpensive energy sources. Biohydrogen (bioH2) is considered to be one of the most appropriate options for this model shift, being easily produced through the anaerobic fermentation of carbohydrate-containing biomass. Ideally, the feedstock should be low-cost, widely available and convertible into a product of interest. Microalgae are considered to possess the referred properties, being also highly valued for their capability to assimilate CO2 [1]. The microalga Spirogyra sp. is able to accumulate high concentrations of intracellular starch, a preferential carbon source for some bioH2 producing bacteria such as Clostridium butyricum [2]. In the present work, Spirogyra biomass was submitted to acid hydrolysis to degrade polymeric components and increase the biomass fermentability. Initial tests of bioH2 production in 120 mL reactors with C. butyricum yielded a maximum volumetric productivity of 141 mL H2/L.h and a H2 production yield of 3.78 mol H2/mol consumed sugars. Subsequently, a sequential batch reactor (SBR) was used for the continuous H2 production from Spirogyra hydrolysate. After 3 consecutive batches, the fermentation achieved a maximum volumetric productivity of 324 mL H2/L.h, higher than most results obtained in similar production systems [3] and a potential H2 production yield of 10.4 L H2/L hydrolysate per day. The H2 yield achieved in the SBR was 2.59 mol H2/mol, a value that is comparable to those attained with several thermophilic microorganisms [3], [4]. In the present work, a detailed energy consumption of the microalgae value-chain is presented and compared with previous results from the literature. The specific energy requirements were determined and the functional unit considered was gH2 and MJH2. It was possible to identify the process stages responsible for the highest energy consumption during bioH2 production from Spirogyra biomass for further optimisation.
机译:当前的能源市场需要紧急修订,以引入可再生,污染少和廉价的能源。生物氢气(bioH2)被认为是这种模式转变的最合适选择之一,它很容易通过含碳水化合物的生物质的厌氧发酵而产生。理想地,原料应该是低成本的,可广泛获得的并且可以转化为感兴趣的产品。微藻被认为具有上述特性,也因其吸收二氧化碳的能力而受到高度重视[1]。微藻螺旋藻能够积累高浓度的细胞内淀粉,淀粉是某些产生生物H2的细菌(如丁酸梭菌)的优先碳源[2]。在目前的工作中,螺旋藻生物质被酸水解以降解聚合物组分并提高生物质的可发酵性。在丁酸梭菌的120 mL反应器中对bioH2产生的初步测试得出最大体积生产率为141 mL H2 / L.h,H2产生产率为3.78 mol H2 / mol消耗的糖。随后,使用连续间歇式反应器(SBR)从Spirogyra水解产物连续生产H2。连续3批次后,发酵的最大容积生产率为324 mL H2 / L.h,高于类似生产系统中的大多数结果[3],每天的潜在H2产量为10.4 L H2 / L水解产物。在SBR中获得的H2收率为2.59 mol H2 / mol,该值可与几种嗜热微生物获得的值相当[3],[4]。在目前的工作中,提出了微藻价值链的详细能耗,并与文献中的先前结果进行了比较。确定了比能量需求,考虑的功能单位为gH2和MJH2。可以确定从螺旋藻生物质生产生物H2期间能耗最高的工艺阶段,以进行进一步优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号