首页> 外文OA文献 >Privacy-preserving collaborative recommendations based on random perturbations
【2h】

Privacy-preserving collaborative recommendations based on random perturbations

机译:基于随机扰动的隐私保护协作建议

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Collaborative recommender systems offer a solution to the information overload problem found in online environments such as e-commerce. The use of collaborative filtering, the most widely used recommendation method, gives rise to potential privacy issues. In addition, the user ratings utilized in collaborative filtering systems to recommend products or services must be protected. The purpose of this research is to provide a solution to the privacy concerns of collaborative filtering users, while maintaining high accuracy of recommendations. This paper proposes a multi-level privacy-preserving method for collaborative filtering systems by perturbing each rating before it is submitted to the server. The perturbation method is based on multiple levels and different ranges of random values for each level. Before the submission of each rating, the privacy level and the perturbation range are selected randomly from a fixed range of privacy levels. The proposed privacy method has been experimentally evaluated with the results showing that with a small decrease of utility, user privacy can be protected, while the proposed approach offers practical and effective results.
机译:协作推荐系统可为在线环境(例如电子商务)中发现的信息过载问题提供解决方案。协作过滤(使用最广泛的推荐方法)的使用会引起潜在的隐私问题。另外,必须保护在协作过滤系统中推荐产品或服务的用户等级。这项研究的目的是为协作过滤用户的隐私问题提供一种解决方案,同时保持推荐的高精度。本文提出了一种用于协作过滤系统的多级隐私保护方法,该方法通过在将每个评级提交给服务器之前对其进行扰动来实现。摄动方法基于多个级别以及每个级别的随机值的不同范围。在提交每个等级之前,从固定的隐私级别范围中随机选择隐私级别和扰动范围。实验对提出的隐私方法进行了实验评估,结果表明,在实用性下降较小的情况下,可以保护用户隐私,而提出的方法则提供了切实有效的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号