首页> 外文OA文献 >Performance of jet substructure techniques for large-ℝ jets in proton-proton collisions at sqrts = 7 TeV using the ATLAS detector
【2h】

Performance of jet substructure techniques for large-ℝ jets in proton-proton collisions at sqrts = 7 TeV using the ATLAS detector

机译:使用ATLAS探测器在sqrts = 7 TeV的质子-质子碰撞中对大流量喷气机的喷气机子结构技术的性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents the application of a variety of techniques to study jet substructure. The performance of various modified jet algorithms, or jet grooming techniques, for several jet types and event topologies is investigated for jets with transverse momentum larger than 300 GeV. Properties of jets subjected to the mass-drop filtering, trimming, and pruning algorithms are found to have reduced sensitivity to multiple proton-proton interactions, are more stable at high luminosity and improve the physics potential of searches for heavy boosted objects. Studies of the expected discrimination power of jet mass and jet substructure observables in searches for new physics are also presented. Event samples enriched in boosted W and Z bosons and top-quark pairs are used to study both the individual jet invariant mass scales and the efficacy of algorithms to tag boosted hadronic objects. The analyses presented use the full 2011 ATLAS dataset, corresponding to an integrated luminosity of 4.7 +/- 0.1 /fb from proton-proton collisions produced by the Large Hadron Collider at a center-of-mass energy of sqrt(s) = 7 TeV.
机译:本文介绍了各种技术在研究射流子结构中的应用。对于横向动量大于300 GeV的喷气机,研究了几种喷气机类型和事件拓扑的各种改良喷气机算法或喷气机修饰技术的性能。发现经过质量下降滤波,修整和修剪算法的射流的属性降低了对多个质子-质子相互作用的敏感性,在高光度下更稳定,并提高了寻找重的增强物体的物理潜能。还介绍了在寻找新物理学时对射流质量和射流亚结构观测值的预期辨别力的研究。富含增强的W和Z玻色子以及顶夸克对的事件样本用于研究单个射流不变质量标度和标记增强的强子物体的算法的有效性。提出的分析使用了完整的2011 ATLAS数据集,对应于在强质子能中心为sqrt(s)= 7 TeV时由大型强子对撞机产生的质子-质子碰撞所产生的积分光度为4.7 +/- 0.1 / fb 。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号