首页> 外文OA文献 >Feature selection method based on sparse representation classification for face recognition
【2h】

Feature selection method based on sparse representation classification for face recognition

机译:基于稀疏表示分类的人脸识别特征选择方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Compressed sensing is a signal processing technique.udThe entity signal can be efficiently reconstructed if the sparse representation is determined. The sparse representations of all the test images are determined with respect to the training set by computing the l1-minimization. However, sparse representation which involves high dimensional feature vector is computationally expensive. Thus, discriminative features that could perform accurately for the face recognition system under visual variations, such as illumination, expression and occlusion have to be selected carefully. In this paper, feature selection method in the application of face recognition based on sparse representation classifier (SRC) is proposed. The proposed technique first divides the images of a few subjects into chunks. Then, it selects the feature subsets based on distance based measurement, the residual, and recognition performance, the accuracy. Extensive experiments with visual variations are carried out by using ORL, AR and Yale databases.
机译:压缩感测是一种信号处理技术。 ud如果确定了稀疏表示,则可以有效地重建实体信号。关于所有训练图像的稀疏表示是通过计算11最小化相对于训练集确定的。然而,涉及高维特征向量的稀疏表示在计算上是昂贵的。因此,必须仔细选择在视觉变化(例如照明,表情和遮挡)下可以对人脸识别系统准确执行的辨别功能。提出了一种基于稀疏表示分类器的特征选择方法。所提出的技术首先将几个主题的图像分成多个块。然后,它基于基于距离的测量,残差以及识别性能,准确性来选择特征子集。使用ORL,AR和Yale数据库进行了具有视觉变化的广泛实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号