首页> 外文OA文献 >Bidirectional reflectance of snow and sea ice: field, laboratory and modeling studies
【2h】

Bidirectional reflectance of snow and sea ice: field, laboratory and modeling studies

机译:雪和海冰的双向反射:野外,实验室和模型研究

摘要

Field measurements of the Hemispherical-Conical Reflectance Factor (HCRF) of Arctic snow-covered tundra were carried out using the GonioRAdiometric Spectrometer System (GRASS); over the viewing angles 0° to 50°, for the wavelength range 400 nm to 1300 nm. The HCRF measurements agreed well between sites where the snowpack was smooth and snow depth was greater than 40 cm, with a relative standard deviation of less than 10 % for backward and near nadir viewing angles. The site with the largest roughness elements had no forward peak and had a strong asymmetry in the HCRF with respect to the solar principal plane. The Conical-Conical Reflectance Factor (CCRF) of laboratory-generated sea ice was measured for the viewing angles 0° to 60°, for the wavelength range 410 nm to 730 nm. The CCRF of sea ice and the averaged HCRF of snow had forward scattering peaks, and an anisotropy that was strongly wavelength dependent; with the relative strength of the forward peak typically increasing with wavelength. The radiative-transfer model, PlanarRad, was able to reproduce the CCRF of the sea ice with a root-meansquared-error (RMSE) of less than 9 %, with differences in the reflectance factors of typically less than 0.05. The change in the hemispherical reflectance of Spectralon over the 19 °C phase transition of PTFE was calculated by measuring the change in the output flux from a temperature-controlled Spectralon integrating sphere at 633 nm. The relative change in hemispherical reflectance was calculated as 0.09 ± 0.02 %, and the change in output flux was 1.82 ± 0.21 %. The change in the hemispherical reflectance of Spectralon is small, but the effect is amplified for integrating spheres; thus the influence of the phase transition on PTFE based integrating spheres should be considered for operating temperatures near to the 19 °C PTFE phase transition temperature.
机译:使用GonioRA光谱仪系统(GRASS)对北极冰雪覆盖的冻原的半球圆锥反射系数(HCRF)进行了现场测量;在0°至50°的视角范围内,波长范围为400 nm至1300 nm。 HCRF的测量在积雪光滑且积雪深度大于40 cm的站点之间非常吻合,对于向后和接近最低点的视角,相对标准偏差小于10%。具有最大粗糙度元素的位置没有正向峰,并且在HCRF中相对于太阳主平面具有很强的不对称性。对于波长范围为410 nm至730 nm的0°至60°视角,测量了实验室产生的海冰的圆锥-圆锥反射系数(CCRF)。海冰的CCRF和雪的平均HCRF具有前向散射峰,并且各向异性与波长密切相关。正向峰的相对强度通常随波长增加。辐射传输模型PlanarRad能够再现海冰的CCRF,其均方根误差(RMSE)小于9%,反射系数差异通常小于0.05。通过在633 nm下测量温度控制的Spectralon积分球的输出通量变化来计算PTFE在19°C相变过程中Spectralon的半球反射率变化。计算出的半球反射率的相对变化为0.09±0.02%,输出通量的变化为1.82±0.21%。 Spectralon的半球反射率变化很小,但是积分球的效果会放大;因此,在接近19°C PTFE相变温度的工作温度下,应考虑相变对基于PTFE的积分球的影响。

著录项

  • 作者

    Ball Christopher;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号