首页> 外文OA文献 >Vibration-based structural damage identification using data mining
【2h】

Vibration-based structural damage identification using data mining

机译:使用数据挖掘的基于振动的结构损伤识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When a structure is damaged, the dynamic characteristics of the structure will change. Generally, main components of a structural health monitoring system are (1) data collection approach including a network of sensors for collecting the response data and (2) an extraction technique to obtain information on the structural health condition. Data mining (DM) is one of the emerging data extraction techniques. DM can play an important role to find out the hidden patterns in databases. Generally, this sophisticated tool isudemployed to find the relationship between data in datasets. Models and patterns, which are obtained from DM process, are used to make predictions. In this study, frequency response function (FRF) measurements obtained from experimental modal analysis of an intact and damaged composite girder deck are used as inputs for data mining to extract the principal components (PCs) of raw FRF data. Experimental modal analysis of the structure is carried out by exerting incrementally enhanced damage severity at specific location. Totally, 6 damage scenarios are considered with depth of 15 mm to 75 mm with the increment of 15 mm at the mid-span of the structure. In the modelling phase of DM process, principal component analysis (PCA) is employed to train a model. The performance of the model is illustrated by comparing the original FRFs and reconstructed FRFs with first 10 PCs.
机译:当结构损坏时,结构的动态特性将发生变化。通常,结构健康监测系统的主要组件是(1)数据收集方法,包括用于收集响应数据的传感器网络,以及(2)获取有关结构健康状况信息的提取技术。数据挖掘(DM)是新兴的数据提取技术之一。 DM可以发挥重要作用,以找出数据库中的隐藏模式。通常,此复杂工具可用于查找数据集中数据之间的关系。从DM过程中获得的模型和模式用于进行预测。在这项研究中,从完整无损的组合式梁桥的实验模态分析获得的频率响应函数(FRF)测量值用作数据挖掘的输入,以提取原始FRF数据的主要成分(PC)。通过在特定位置施加逐渐增强的破坏严重性来进行结构的实验模态分析。总共考虑了6种破坏情况,深度在15毫米至75毫米之间,在结构的中跨处增加15毫米。在DM过程的建模阶段,主要成分分析(PCA)用于训练模型。通过将原始FRF和重构的FRF与前10个PC进行比较来说明模型的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号