首页> 外文OA文献 >A distributed particle filtering approach for multiple acoustic source tracking using an acoustic vector sensor network
【2h】

A distributed particle filtering approach for multiple acoustic source tracking using an acoustic vector sensor network

机译:使用声矢量传感器网络进行多声源跟踪的分布式粒子滤波方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Different centralized approaches such as least-squares (LS) and particle filtering (PF) algorithms have been developed to localize an acoustic source by using a distributed acoustic vector sensor (AVS) array. However, such algorithms are either not applicable for multiple sources or rely heavily on sensor-processor communication. In this paper, a distributed unscented PF (DUPF) approach is proposed for multiple acoustic source tracking. At each distributed AVS node, the first-order and the second-order statistics of the local state are estimated by using an unscented information filter (UIF) based PF. The UIF is employed to approximate the optimum importance function due to its simplicity, by which the matrix operation is the state information matrix rather than the covariance matrix of the measurement sequence. These local statistics are then fused between neighbor nodes and a consensus filter is applied to achieve a global estimation. In such an architecture, only the state statistics need to be transmitted among the neighbor nodes. Consequently, the communication cost can be reduced. The distributed posterior Cramer-Rao bound is also derived. Simulation results show that the performance of the DUPF tracking approach is similar to that of centralized PF algorithm and significantly better than that of LS algorithms. (C) 2014 Elsevier B.V. All rights reserved.
机译:已经开发出不同的集中式方法,例如最小二乘(LS)和粒子滤波(PF)算法,以通过使用分布式声矢量传感器(AVS)阵列来定位声源。但是,这样的算法要么不适用于多个源,要么严重依赖传感器与处理器的通信。本文提出了一种分布式无味PF(DUPF)方法,用于多声源跟踪。在每个分布式AVS节点,使用基于无味信息过滤器(UIF)的PF估计本地状态的一阶和二阶统计量。 UIF由于其简单性而被用于逼近最佳重要性函数,通过该矩阵,矩阵运算是状态信息矩阵而不是测量序列的协方差矩阵。然后将这些本地统计信息融合在相邻节点之间,并应用共识过滤器以实现全局估计。在这种架构中,仅状态统计信息需要在相邻节点之间传输。因此,可以降低通信成本。还导出了分布式后部Cramer-Rao界。仿真结果表明,DUPF跟踪方法的性能与集中式PF算法相似,并且明显优于LS算法。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号