首页> 外文OA文献 >Process monitoring and fault detection in nonlinear chemical process based on multi-scale Kernel Fisher discriminant analysis
【2h】

Process monitoring and fault detection in nonlinear chemical process based on multi-scale Kernel Fisher discriminant analysis

机译:基于多尺度核Fisher判别分析的非线性化学过程监测与故障检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a multi-scale kernel Fisher discriminant analysis (MSKFDA) algorithm combining Fisher discriminant analysis (FDA) and its nonlinear kernel variation with the wavelet analysis. This approach is proposed for investigating the potential integration of wavelets and multi-scale methods with discriminant analysis in nonlinear chemical process monitoring and fault detection system. In this paper, a discrete wavelet transform (DWT) is applied to extract the dynamics of the process at different scales. The wavelet coefficients obtained during the analysis are used as input for the algorithm. By decomposing the process data into multiple scales, MSKFDA analyse the dynamical data at different scales and then restructure scales that containedudimportant information by inverse discrete wavelet transform (IDWT). A monitoring statistic based on Hoteling’s T2ud statistics is used in process monitoring and faultuddetection. The Tennessee Eastman benchmark process is used to demonstrate the performance of the proposed approach in comparison with conventional statistical monitoring and fault detection methods. A comparison in terms of false alarm rate, missed alarm rate and detection delay, indicate that the proposed approach outperform the others and enhanced the capabilities of this approach for the diagnosis of industrial applications.
机译:本文提出了一种将Fisher判别分析(FDA)及其非线性核变异与小波分析相结合的多尺度核Fisher判别分析(MSKFDA)算法。该方法用于研究非线性化学过程监测和故障检测系统中小波和多尺度方法与判别分析的潜在集成。在本文中,应用离散小波变换(DWT)来提取不同规模过程的动力学。分析期间获得的小波系数用作算法的输入。通过将过程数据分解为多个尺度,MSKFDA可以分析不同尺度的动态数据,然后通过离散离散小波变换(IDWT)重构包含重要信息的尺度。基于Hoteling的T2 ud统计信息的监视统计信息用于过程监视和故障 uddetect。与传统的统计监视和故障检测方法相比,田纳西州伊士曼基准测试过程用于证明该方法的性能。在误报率,漏报率和检测延迟方面的比较表明,该方法优于其他方法,并增强了该方法在工业应用中的诊断能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号