首页> 外文OA文献 >Design and implementation of low power multistage amplifiers and high frequency distributed amplifiers
【2h】

Design and implementation of low power multistage amplifiers and high frequency distributed amplifiers

机译:低功耗多级放大器和高频分布式放大器的设计与实现

摘要

The advancement in integrated circuit (IC) technology has resulted in scaling down of device sizes and supply voltages without proportionally scaling down the threshold voltage of the MOS transistor. This, coupled with the increasing demand for low power, portable, battery-operated electronic devices, like mobile phones, and laptops provides the impetus for further research towards achieving higher integration on chip and low power consumption. High gain, wide bandwidth amplifiers driving large capacitive loads serve as error amplifiers in low-voltage low drop out regulators in portable devices. This demands low power, low area, and frequency-compensated multistage amplifiers capable of driving large capacitive loads. The first part of the research proposes two power and area efficient frequency compensation schemes: Single Miller Capacitor Compensation (SMC) and Single Miller Capacitor Feedforward Compensation (SMFFC), for multistage amplifiers driving large capacitive loads. The designs have been implemented in a 0.5??m CMOS process. Experimental results show that the SMC and SMFFC amplifiers achieve gain-bandwidth products of 4.6MHz and 9MHz, respectively, when driving a load of 25Kδ/120pF. Each amplifier operates from a ??1V supply, dissipates less than 0.42mW of power and occupies less than 0.02mm2 of silicon area. The inception of the latest IEEE standard like IEEE 802.16 wireless metropolitan area network (WMAN) for 10 -66 GHz range demands wide band amplifiers operating at high frequencies to serve as front-end circuits (e.g. low noise amplifier) in such receiver architectures. Devices used in cascade (multistage amplifiers) can be used to increase the gain but it is achieved at an expense of bandwidth. Distributing the capacitance associated with the input and the output of the device over a ladder structure (which is periodic), rather than considering it to be lumped can achieve an extension of bandwidth without sacrificing gain. This concept which is also known as distributed amplification has been explored in the second part of the research. This work proposes certain guidelines for the design of distributed low noise amplifiers operating at very high frequencies. Noise analysis of the distributed amplifier with real transmission lines is introduced. The analysis for gain and noise figure is verified with simulation results from a 5-stage distributed amplifier implemented in a 0.18??m CMOS process.
机译:集成电路(IC)技术的进步导致缩小了器件尺寸和电源电压,而没有成比例地缩小MOS晶体管的阈值电压。加上对低功耗,便携式电池供电的电子设备(例如移动电话和笔记本电脑)的需求不断增长,为进一步研究实现更高的芯片集成度和低功耗提供了动力。驱动大容性负载的高增益,宽带放大器用作便携式设备中低压低压差稳压器中的误差放大器。这需要能够驱动大容性负载的低功耗,小面积和频率补偿的多级放大器。研究的第一部分提出了两种功率和面积有效的频率补偿方案:单米勒电容器补偿(SMC)和单米勒电容器前馈补偿(SMFFC),用于驱动大电容负载的多级放大器。这些设计已在0.5?m的CMOS工艺中实现。实验结果表明,当驱动25Kδ/ 120pF的负载时,SMC和SMFFC放大器的增益带宽积分别为4.6MHz和9MHz。每个放大器均采用?? 1V电源工作,耗散小于0.42mW的功率,并占用小于0.02mm2的硅面积。对于10 -66 GHz范围的最新IEEE标准(如IEEE 802.16无线城域网(WMAN))的诞生,要求在这种频率下工作的宽带放大器用作此类接收机体系结构中的前端电路(例如低噪声放大器)。级联(多级放大器)中使用的设备可以用来增加增益,但是要以带宽为代价来实现。在梯形结构上(周期性的)分配与设备的输入和输出相关的电容,而不是考虑将其集总,可以在不牺牲增益的情况下实现带宽扩展。在第二部分的研究中已经探索了这个概念,也就是分布式放大。这项工作为在非常高的频率下工作的分布式低噪声放大器的设计提出了某些准则。介绍了具有实际传输线的分布式放大器的噪声分析。增益和噪声系数的分析已通过采用0.18?m CMOS工艺实现的5级分布式放大器的仿真结果进行了验证。

著录项

  • 作者

    Mishra Chinmaya;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号