首页> 外文OA文献 >Nanocrystals Embedded Zirconium-doped Hafnium Oxide High-k Gate Dielectric Films
【2h】

Nanocrystals Embedded Zirconium-doped Hafnium Oxide High-k Gate Dielectric Films

机译:纳米晶嵌入锆掺杂的氧化Ha高k栅介质膜

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanocrystals embedded zirconium-doped hafnium oxide (ZrHfO) high-k gate dielectric films have been studied for the applications of the future metal oxide semiconductor field effect transistor (MOSFET) and nonvolatile memory. ZrHfO has excellent gate dielectric properties and can be prepared into MOS structure with a low equivalent oxide thickness (EOT). Ruthenium (Ru) modification effects on the ZrHfO high-k MOS capacitor have been investigated. The bulk and interfacial properties changed with the inclusion of Ru nanoparticles. The permittivity of the ZrHfO film was increased while the energy depth of traps involved in the current transport was lowered. However, the barrier height of titanium nitride (TiN)/ZrHfO was not affected by the Ru nanoparticles. These results can be important to the novel metal gate/high-k/Si MOS structure. The Ru-modified ZrHfO gate dielectric film showed a large breakdown voltage and a long lifetime.The conventional polycrystalline Si (poly-Si) charge trapping layer can be replaced by the novel floating gate structure composed of discrete nanodots embedded in the high-k film. By replacing the SiO2 layer with the ZrHfO film, promising memory functions, e.g., low programming voltage and long charge retention time, can be expected. In this study, the ZrHfO high-k MOS capacitors that separately contain nanocrystalline ruthenium oxide (nc-RuO), indium tin oxide (nc-ITO), and zinc oxide (nc-ZnO) have been successfully fabricated by the sputtering deposition method followed with the rapid thermal annealing process. Material and electrical properties of these kinds of memory devices have been investigated using analysis tools such as XPS, XRD, and HRTEM; electrical characterizations such as C-V, J-V, CVS, and frequency-dependent measurements. All capacitors showed an obvious memory window contributed by the charge trapping effect. The formation of the interface at the nc-RuO/ZrHfO and nc-ITO/ZrHfO contact regions was confirmed by the XPS spectra. Charges were deeply trapped to the bulk nanocrystal sites. However, a portion of holes were loosely trapped at the nanocrystal/ZrHfO interface. Charges trapped to the different sites lead to different detrapping characteristics. For further improving the memory functions, the dual-layer nc-ITO and -ZnO embedded ZrHfO gate dielectric stacks have been fabricated. The dual-layer embedded structure contains two vertically-separated nanocrystal layers with a higher density than the single-layer embedded structure. The critical memory functions, e.g., memory window, programming efficiency, and charge retention can be improved by using the dual-layer nanocrystals embedded floating gate structure. This kind of gate dielectric stack is vital for the next-generation nonvolatile memory applications.
机译:为了将来的金属氧化物半导体场效应晶体管(MOSFET)和非易失性存储器的应用,已经研究了纳米晶嵌入锆掺杂的氧化ha(ZrHfO)高k栅介电膜。 ZrHfO具有优异的栅极介电性能,可以制备成具有低等效氧化物厚度(EOT)的MOS结构。研究了钌(Ru)修饰对ZrHfO高k MOS电容器的影响。随着Ru纳米颗粒的加入,其体积和界面性质发生了变化。 ZrHfO薄膜的介电常数增加,而电流传输中陷阱的能级降低。然而,氮化钛(TiN)/ ZrHfO的势垒高度不受Ru纳米粒子的影响。这些结果对于新型金属栅极/高k / Si MOS结构可能很重要。 Ru修饰的ZrHfO栅极介电膜具有较大的击穿电压和较长的使用寿命。可以用由嵌入高k膜中的离散纳米点组成的新型浮栅结构代替常规的多晶Si(poly-Si)电荷俘获层。 。通过用ZrHfO膜代替SiO 2层,可以期待有希望的存储功能,例如低编程电压和长电荷保持时间。在这项研究中,通过溅射沉积法成功地制造了分别包含纳米晶体氧化钌(nc-RuO),氧化铟锡(nc-ITO)和氧化锌(nc-ZnO)的ZrHfO高k MOS电容器,随着快速的热退火过程。已经使用XPS,XRD和HRTEM等分析工具研究了这类存储设备的材料和电学特性。电气特性,例如C-V,J-V,CVS和频率相关的测量。所有电容器均表现出明显的存储窗口,这是由电荷陷阱效应引起的。 XPS光谱证实了在nc-RuO / ZrHfO和nc-ITO / ZrHfO接触区域的界面形成。电荷被深深地捕获到块状纳米晶体位点。然而,一部分孔被松散地捕获在纳米晶体/ ZrHfO界面处。捕获到不同位置的电荷会导致不同的释放特性。为了进一步改善存储功能,已经制造了双层nc-ITO和-ZnO嵌入式ZrHfO栅极电介质叠层。双层嵌入结构包含两个垂直分离的纳米晶体层,其密度高于单层嵌入结构的密度。通过使用双层纳米晶体嵌入式浮栅结构,可以改善关键的存储器功能,例如存储器窗口,编程效率和电荷保留。这种栅极电介质堆栈对于下一代非易失性存储器应用至关重要。

著录项

  • 作者

    Lin Chen-Han;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号