首页> 外文OA文献 >Bloom Filter Based Intrusion Detection for Smart Grid
【2h】

Bloom Filter Based Intrusion Detection for Smart Grid

机译:基于Bloom Filter的智能电网入侵检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis addresses the problem of local intrusion detection for SCADA (Supervisory Control and Data Acquisition) field devices in the smart grid. A methodology is proposed to detect anomalies in the communication patterns using a combination of n-gram analysis and Bloom Filter. The predictable and regular nature of the SCADA communication patterns is exploited to train the intrusion detection system. The protocol considered to test the proposed approach is MODBUS which is used for communication between a SCADA server and field devices in power system. The approach is tested for attacks like HMI compromise and Man-in-the-Middle. Bloom Filter is chosen because of its strong space advantage over other data structures like hash tables, linked lists etc. for representing sets. The advantage comes from its probabilistic nature and compact array structure. The false positive rates are found to be minimal with careful choice of parameters for Bloom Filter design. Also the memory-efficient property of Bloom Filter makes it suitable for implementation in resource constrained SCADA components. It is also established that the knowledge of physical state of the power system i.e., normal, emergency or restorative state can help in improving the accuracy of the proposed approach.
机译:本文解决了智能电网中SCADA(监控和数据采集)现场设备的本地入侵检测问题。提出了一种通过结合使用n-gram分析和Bloom Filter来检测通信模式中异常的方法。利用SCADA通信模式的可预测性和常规性来训练入侵检测系统。用来测试所提出方法的协议是MODBUS,它用于SCADA服务器与电力系统中现场设备之间的通信。该方法已针对HMI攻击和中间人攻击进行了测试。选择Bloom Filter是因为它具有比其他数据结构(例如散列表,链接列表等)代表集合的强大空间优势。优势来自其概率性质和紧凑的阵列结构。通过仔细选择用于布隆过滤器设计的参数,发现误报率极小。而且,Bloom Filter的内存高效属性使其适合在资源受限的SCADA组件中实施。还可以确定,电力系统的物理状态,即正常,紧急或恢复状态的知识可以帮助提高所提出方法的准确性。

著录项

  • 作者

    Parthasarathy Saranya;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号