首页> 外文OA文献 >Quantitative Determination of Chemical Processes by Dynamic Nuclear Polarization Enhanced Nuclear Magnetic Resonance Spectroscopy
【2h】

Quantitative Determination of Chemical Processes by Dynamic Nuclear Polarization Enhanced Nuclear Magnetic Resonance Spectroscopy

机译:动态核极化增强核磁共振波谱定量测定化学过程

摘要

Dissolution dynamic nuclear polarization (DNP) provides several orders of magnitude of NMR signal enhancement by converting the much larger electron spin polarization to nuclear spin polarization. Polarization occurs at low temperature (1.4K) and is followed by quickly dissolving the sample for room temperature NMR detection. DNP is generally applicable to almost any small molecules and can polarize various nuclei including 1H, 19F and 13C. The large signal from DNP enhancement reduces the limit of detection to micromolar or sub-micromolar concentration in a single scan. Since DNP enhancement often provides the only source for the observable signal, it enables tracking of the polarization flow. Therefore, DNP is ideal for studying chemical processes. Here, quantitative tools are developed to separate kinetics and spin relaxation, as well as to obtain structural information from these measurements. Techniques needed for analyzing DNP polarized sample are different from those used in conventional NMR because a large, yet non-renewable hyperpolarization is available. Using small flip angle pulse excitation, the hyperpolarization can still be divided into multiple scans. Based on this principle, a scheme is presented that allows reconstruction of indirect spectral dimensions similarly to conventional 2D NMR. Additionally, small flip angle pulses can be used to obtain a succession of scans separated in time. A model describing the combined effects of the evolution of a chemical process and of spin-lattice relaxation is shown. Applied to a Diels-Alder reaction, it permitted measuring kinetics along with the effects of auto- and cross-relaxation. DNP polarization of small molecules also shows significant promise for studying protein-ligand interaction. The binding of fluorinated ligands to the protease trypsin was studied through the observation of various NMR parameter changes, such as line width, signal intensity and chemical shift of the ligands. Intermolecular polarization transfer from hyperpolarized ligand to protein can further provide information about the binding pocket of the protein. As an alternative to direct observation of protein signal, a model is presented to describe a two-step intermolecular polarization transfer between competitively binding ligands mediated through the common binding pocket of the protein. The solutions of this model relate the evolution of signal intensities to the intermolecular cross relaxation rates, which depend on individual distances in the binding epitope. In summary, DNP provides incomparable sensitivity, speed and selectivity to NMR. Quantitative models such as those discussed here enable taking full advantage of these benefits for the study of chemical processes.
机译:溶解动态核极化(DNP)通过将更大的电子自旋极化转换为核自旋极化,提供了几个数量级的NMR信号增强。极化在低温(1.4K)下发生,然后快速溶解样品进行室温NMR检测。 DNP通常适用于几乎所有小分子,并且可以极化包括1H,19F和13C在内的各种核。 DNP增强产生的大信号将单次扫描的检测极限降低到微摩尔或亚微摩尔浓度。由于DNP增强通常是可观察信号的唯一来源,因此可以跟踪极化流。因此,DNP是研究化学过程的理想选择。在这里,开发了定量工具来分离动力学和自旋弛豫,以及从这些测量中获得结构信息。分析DNP极化样品所需的技术与常规NMR中使用的技术不同,因为可以使用大但不可更新的超极化方法。使用小翻转角脉冲激励,超极化仍可分为多次扫描。基于此原理,提出了一种方案,该方案类似于常规的2D NMR,可以重建间接光谱尺寸。另外,小的翻转角脉冲可用于获得在时间上分开的连续扫描。显示了一个描述化学过程演化和自旋晶格弛豫的综合效应的模型。应用于Diels-Alder反应时,它可以测量动力学以及自动松弛和交叉松弛的影响。小分子的DNP极化也显示了研究蛋白质-配体相互作用的重要前景。通过观察各种NMR参数变化(如配体的线宽,信号强度和化学位移),研究了氟化配体与蛋白酶胰蛋白酶的结合。从超极化配体到蛋白质的分子间极化转移可以进一步提供有关蛋白质结合口袋的信息。作为直接观察蛋白质信号的替代方法,提出了一个模型来描述通过蛋白质的共同结合口袋介导的竞争结合配体之间的两步分子间极化转移。该模型的解决方案将信号强度的演变与分子间交叉弛豫速率相关,分子间交叉弛豫速率取决于结合表位中的各个距离。总之,DNP对NMR具有无与伦比的灵敏度,速度和选择性。诸如此处讨论的定量模型可以充分利用这些好处来研究化学过程。

著录项

  • 作者

    Zeng Haifeng;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号