首页> 外文OA文献 >Transmit field pattern control for high field magnetic resonance imaging with integrated RF current sources
【2h】

Transmit field pattern control for high field magnetic resonance imaging with integrated RF current sources

机译:具有集成射频电流源的高场磁共振成像的传输场模式控制

摘要

The primary design criterion for RF transmit coils for MRI is uniform transverse magnetic (B1) field. Currently, most high frequency transmit coils are designed as periodic, symmetric structures that are resonant at the imaging frequency, as determined by the static magnetic (B0) field strength. These coils are excited by one or more voltage sources. The distribution of currents on the coil elements or rungs is determined by the symmetry of the coil structure. At field strengths of 3T and above, electric properties such as the dielectric constant and conductivity of the load lead to B1 field inhomogeneity due to wavelength effects and perturbation of the coil current distribution from the ideal. The B1 field homogeneity under such conditions may be optimized by adjusting the amplitudes and phases of the currents on the rungs. However, such adjustments require independent control of current amplitudes and phases on each rung of the resonant coil. Due to both the strong coupling among the rungs of a resonant coil and the sensitivity to loading, such independent control would not be possible and B1 homogeneity optimization would involve a time consuming and impractical iterative procedure in the absence of exact knowledge of interactions among coil elements and between the coil and load. This dissertation is based on the work done towards the design and development of a RF current source that drives high amplitude RF current through an integrated array element. The arrangement is referred to as a current element. Independent control of current amplitude and phase on the current elements is demonstrated. A non-resonant coil structure consisting of current elements is implemented and B1 field pattern control is demonstrated. It is therefore demonstrated that this technology would enable effective B1 field optimization in the presence of lossy dielectric loads at high field strengths.
机译:MRI射频发射线圈的主要设计标准是均匀的横向磁场(B1)。当前,大多数高频发射线圈被设计为周期性的对称结构,该结构在成像频率下共振,这取决于静磁场(B0)的场强。这些线圈由一个或多个电压源激励。电流在线圈元件或梯级上的分布取决于线圈结构的对称性。在3T或更高的场强下,诸如波长的介电常数和电导率之类的电特性会由于波长效应和线圈电流分布偏离理想状态而导致B1场不均匀。在这种情况下,B1场均匀性可以通过调整梯级上电流的幅度和相位来优化。但是,这样的调节需要独立控制谐振线圈的每个梯级上的电流幅度和相位。由于谐振线圈的横档之间的强耦合以及对负载的敏感性,因此不可能实现这种独立控制,并且在没有确切了解线圈元素之间相互作用的情况下,B1均匀性优化将涉及耗时且不切实际的迭代过程在线圈和负载之间。本文是基于射频电流源的设计和开发工作而进行的,该电流源通过集成阵列元件驱动高幅度射频电流。该布置被称为当前元件。演示了电流元件上电流幅度和相位的独立控制。实现了一种由电流元件组成的非谐振线圈结构,并演示了B1场模式控制。因此证明,该技术将在高场强下有损耗介电负载的情况下实现有效的B1场优化。

著录项

  • 作者

    Kurpad Krishna Nagaraj;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号