首页> 外文OA文献 >Passive and active circuits in cmos technology for rf, microwave and millimeter wave applications
【2h】

Passive and active circuits in cmos technology for rf, microwave and millimeter wave applications

机译:cmos技术中的无源和有源电路,用于射频,微波和毫米波应用

摘要

The permeation of CMOS technology to radio frequencies and beyond hasfuelled an urgent need for a diverse array of passive and active circuits that address thechallenges of rapidly emerging wireless applications. While traditional analog baseddesign approaches satisfy some applications, the stringent requirements of newlyemerging applications cannot necessarily be addressed by existing design ideas andcompel designers to pursue alternatives. One such alternative, an amalgamation ofmicrowave and analog design techniques, is pursued in this work.A number of passive and active circuits have been designed using a combinationof microwave and analog design techniques. For passives, the most crucial challenge totheir CMOS implementation is identified as their large dimensions that are notcompatible with CMOS technology. To address this issue, several design techniques ?including multi-layered design and slow wave structures ? are proposed anddemonstrated through experimental results after being suitably tailored for CMOStechnology. A number of novel passive structures - including a compact 10 GHz hairpin resonator, a broadband, low loss 25-35 GHz Lange coupler, a 25-35 GHz thin filmmicrostrip (TFMS) ring hybrid, an array of 0.8 nH and 0.4 nH multi-layered high selfresonant frequency (SRF) inductors are proposed, designed and experimentally verified.A number of active circuits are also designed and notable experimental resultsare presented. These include 3-10 GHz and DC-20 GHz distributed low noise amplifiers(LNA), a dual wideband Low noise amplifier and 15 GHz distributed voltage controlledoscillators (DVCO). Distributed amplifiers are identified as particularly effective in thedevelopment of wideband receiver front end sub-systems due to their gain flatness,excellent matching and high linearity. The most important challenge to theimplementation of distributed amplifiers in CMOS RFICs is identified as the issue oftheir miniaturization. This problem is solved by using integrated multi-layered inductorsinstead of transmission lines to achieve over 90% size compression compared to earlierCMOS implementations. Finally, a dual wideband receiver front end sub-system isdesigned employing the miniaturized distributed amplifier with resonant loads andintegrated with a double balanced Gilbert cell mixer to perform dual band operation. Thereceiver front end measured results show 15 dB conversion gain, and a 1-dBcompression point of -4.1 dBm in the centre of band 1 (from 3.1 to 5.0 GHz) and -5.2dBm in the centre of band 2 (from 5.8 to 8 GHz) with input return loss less than 10 dBthroughout the two bands of operation.
机译:CMOS技术渗透到射频及以后的频率已经迫切需要各种各样的无源和有源电路,以应对迅速兴起的无线应用所面临的挑战。虽然传统的基于模拟的设计方法可以满足某些应用程序的需求,但现有的设计思想和强制设计人员并不一定要解决新出现的应用程序的严格要求。一种可行的替代方案是将微波和模拟设计技术融合在一起。微波和模拟设计技术的结合已经设计了许多无源和有源电路。对于无源器件来说,对其CMOS实施最关键的挑战是其大尺寸与CMOS技术不兼容。为了解决这个问题,有几种设计技术,包括多层设计和慢波结构。在针对CMOS技术进行了适当量身定制之后,我们通过实验结果提出并展示了它们。许多新颖的无源结构-包括紧凑的10 GHz发夹式谐振器,宽带,低损耗25-35 GHz兰格耦合器,25-35 GHz薄膜微带(TFMS)环形混合电路,0.8 nH和0.4 nH多极化阵列提出了分层的高自谐振频率(SRF)电感器,进行了设计和实验验证。还设计了许多有源电路,并给出了明显的实验结果。其中包括3-10 GHz和DC-20 GHz分布式低噪声放大器(LNA),双宽带低噪声放大器和15 GHz分布式压控振荡器(DVCO)。分布式放大器由于其增益平坦,出色的匹配和高线性度而被认为在宽带接收机前端子系统的开发中特别有效。 CMOS RFIC中实现分布式放大器的最重要挑战是其小型化问题。与较早的CMOS实现方案相比,通过使用集成的多层电感器而不是传输线来解决此问题,可实现90%以上的尺寸压缩。最后,设计了一种双宽带接收机前端子系统,该子系统采用具有谐振负载的小型分布式放大器,并与双平衡吉尔伯特单元混频器集成在一起以执行双频带操作。接收器前端的测量结果表明,转换增益为15 dB,在频带1的中心(从3.1到5.0 GHz)和-5.2dBm在频带2的中心(从5.8到8 GHz)的1-dB压缩点为-4.1 dBm。 )在两个工作频段内的输入回波损耗均小于10 dB。

著录项

  • 作者

    Chirala Mohan Krishna;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号