首页> 外文OA文献 >Supported phospholipid membranes as biometric labs-on-a-chip: analytical devices that mimic cell membrane architectures and provide insight into the mechanism of biopreservation
【2h】

Supported phospholipid membranes as biometric labs-on-a-chip: analytical devices that mimic cell membrane architectures and provide insight into the mechanism of biopreservation

机译:支持的磷脂膜作为生物芯片实验室:模拟细胞膜结构并提供对生物保存机制的深入了解的分析设备

摘要

This dissertation focuses on the applications of solid supported phospholipidmembranes as mimics of the cellular membrane using lab-on-a-chip devices in order tostudy biochemical events such as ligand-receptor binding and the chemical mechanismfor the preservation of the biomembrane. Supported lipid bilayers (SLBs) mimic thenative membrane by presenting the important property of two-dimensional lateralfluidity of the individual lipid molecules within the membrane. This is the sameproperty that allows for the reorganization of native membrane components andfacilitates multivalent ligand-receptor interactions akin to immune response, cellsignaling, pathogen attack and other biochemical processes.The study is divided into two main facets. The first deals with developing anovel lipopolymer supported membrane biochip consisting of Poly(ethylene glycol)(PEG)-lipopolymer incorporated membranes. The formation and characterization of thelipopolymer membranes was investigated in terms of the polymer size, concentrationand molecular conformation. The lateral diffusion of the PEG-bilayers was similar tothe control bilayers. The air-stability conferred to SLBs was determined to be more effective when the PEG polymer was at, or above, the onset of the mushroom-to-brushtransition. The system is able to function even after dehydration for 24 hours. Ligandreceptorbinding was analyzed as a function of PEG density. The PEG-lipopolymer actsas a size exclusion barrier for protein analytes in which the binding of streptavidin wasunaffected whereas the binding of the much larger IgG and IgM were either partially orcompletely inhibited in the presence of PEG.The second area of this study presents a molecular mechanism for in vivobiopreservation by employing solid supported membranes as a model system. Themolecular mechanism of how a variety of organisms are preserved during stresses suchas anhydrobiosis or cryogenic conditions was investigated. We investigated theinteraction of two disaccharides, trehalose and maltose with the SLBs. Trehalose wasfound to be the most effective in preserving the membrane, whereas maltose exhibitedlimited protection. Trehalose lowers the lipid phase transition temperature andspectroscopic evidence shows the intercalation of trehalose within the membraneprovides the chemical and morphological stability under a stress environment.
机译:为了研究诸如配体-受体结合以及生物膜保存的化学机制等生化事件,本论文着重研究了使用芯片实验室设备将固体负载的磷脂膜作为细胞膜的模拟物的应用。支持的脂质双层(SLB)通过呈现膜内单个脂质分子的二维侧向流动的重要特性来模拟膜。该属性可以重组天然膜成分,并促进类似于免疫反应,细胞信号转导,病原体侵袭和其他生化过程的多价配体-受体相互作用。该研究分为两个主要方面。第一个涉及开发由anovel脂聚合物支撑的膜生物芯片,该膜生物芯片由掺有聚(乙二醇)(PEG)-脂聚合物的膜组成。根据聚合物的大小,浓度和分子构象研究了脂聚合物膜的形成和表征。 PEG双层的横向扩散类似于对照双层。当PEG聚合物在蘑菇到刷子的转变开始时或更高时,确定赋予SLB的空气稳定性更有效。该系统甚至可以在脱水24小时后运行。分析了配体受体结合作为PEG密度的函数。 PEG-脂聚合物充当蛋白质分析物的尺寸排阻屏障,其中链霉亲和素的结合不受影响,而更大的IgG和IgM的结合在PEG存在下被部分或完全抑制。本研究的第二部分提出了分子机制通过使用固体支持膜作为模型系统进行体内生物保存。研究了在压力下,例如脱水和低温条件下如何保存各种生物的分子机制。我们研究了两种二糖海藻糖和麦芽糖与SLBs的相互作用。发现海藻糖在保存膜方面最有效,而麦芽糖则显示出有限的保护作用。海藻糖降低了脂质的相变温度,光谱证据表明,在膜内插入海藻糖可在压力环境下提供化学和形态稳定性。

著录项

  • 作者

    Albertorio Fernando;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号