首页> 外文OA文献 >Predicting the Texas Windstorm Insurance Association Payout for Commercial Property Loss Due to Ike Based on Weather, Geographical, and Building Variables
【2h】

Predicting the Texas Windstorm Insurance Association Payout for Commercial Property Loss Due to Ike Based on Weather, Geographical, and Building Variables

机译:基于天气,地理和建筑变量,预测因艾克而引起的商业财产损失的德克萨斯州暴风雨保险协会赔付

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hurricanes cause enormous loss to life and property worldwide. Predicting the damage caused by hurricane and figuring out what factors are responsible for the damage are important. This study utilizes multiple linear regression models to predict a hurricane ? induced Texas Windstorm Insurance Association (TWIA) payout or TWIA payout ratio using independent variables that could affect the hurricane intensity, including distance from the coastline, distance from the hurricane track, distance from the landfall center of Hurricane Ike, proportion in floodplain zone (100 year, 500 year, 100-500 year), building area, proportion in island, number of buildings per parcel, and building age.The methodology of this study includes Pearson?s correlation and multiple linear regressions. First, Pearson?s correlation is used to examine whether there are any significant correlations between the dependent and independent variables. For TWIA payout, three independent variables, distance from the coastline, distance from the landfall center, and building area, are correlated to the TWIA payout at the 0.01 level. Distance from the coastline and distance from the landfall center have negative relations with the TWIA payout. The variable, building area, has a positive relation with the TWIA payout. Moreover, the improvement value is correlated to the TWIA payout at the 0.05 level. For TWIA payout ratio, distance from the coastline is correlated to the TWIA payout ratio at the level of 0.01 and distance from the landfall center is correlated to the TWIA payout ratio at the 0.05 level. These two variables have negative relations to the TWIA payout ratio.Multiple linear regressions are applied to predict the TWIA payout and payout ratio. A regression model with an Adjusted R Square of 0.264 is presented to predict the TWIA payout. This model could explain 26.4 percent of the variability in TWIA payout using the variables, distance from coastline and building area. A regression model with an Adjusted R Square of 0.121 is presented to predict the TWIA payout ratio.
机译:飓风给全世界的生命和财产造成巨大损失。预测飓风造成的损害并找出造成损害的因素很重要。本研究利用多个线性回归模型来预测飓风?使用可能影响飓风强度的自变量来诱导德克萨斯州暴风雨保险协会(TWIA)支出或TWIA支出比率,包括到海岸线的距离,到飓风轨道的距离,到飓风艾克登陆中心的距离,洪泛区的比例(100年,500年,100-500年),建筑面积,在岛屿中所占的比例,每个地块的建筑数量和建筑年龄。这项研究的方法包括Pearson相关性和多元线性回归。首先,皮尔逊相关性用于检验因变量和自变量之间是否存在任何显着的相关性。对于TWIA支付,将三个独立变量(距海岸线的距离,距登陆中心的距离和建筑面积)与0.01级别的TWIA支付相关。距海岸线的距离和距登陆中心的距离与TWIA支出呈负相关。建筑面积变量与TWIA支出呈正相关。而且,改进值与0.05级的TWIA支出相关。对于TWIA支付比率,距海岸线的距离与TWIA支付比率在0.01级别上相关,而距登陆中心的距离与TWIA支付比率在0.05级别上相关。这两个变量与TWIA的支出比率具有负相关关系。使用多元线性回归来预测TWIA的支出和支出比率。提出了调整后R平方为0.264的回归模型来预测TWIA支出。该模型可以使用变量,距海岸线的距离和建筑面积来解释TWIA支付中26.4%的可变性。提出了调整后R平方为0.121的回归模型,以预测TWIA的支出比率。

著录项

  • 作者

    Zhu Kehui;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号