首页> 外文OA文献 >Electrokinetic and acoustic manipulations of colloidal and biological particles
【2h】

Electrokinetic and acoustic manipulations of colloidal and biological particles

机译:胶体和生物颗粒的电动和声学操纵

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent advances in microfluidic technologies have enabled integration of thefunctional units for biological and chemical analysis onto miniaturized chips, called Labon-a-Chip (LOC). However, the effective manipulation and control of colloidal particlessuspended in fluids are still challenging tasks due to the lack of clear characterization ofparticle control mechanisms. The aim of this dissertation is to develop microfluidictechniques and devices for manipulating colloids and biological particles with theutilization of alternating current (AC) electric fields and acoustic waves.The dissertation presents a simple theoretical tool for predicting the motion ofcolloidal particles in the presence of AC electric field. Dominant electrokinetic forcesare explained as a function of the electric field conditions and material properties, andparametric experimental validations of the model are conducted with particles andbiological species. Using the theoretical tool as an effective framework for designingelectrokinetic systems, a dielectrophoresis (DEP) based microfluidic device for trappingbacterial spores from high conductivity media is developed. With a simple planar electrode having well defined electric field minima that can act as the targetattachment/detection sites for integration of biosensors, negative DEP trapping of sporeson patterned surfaces is successfully demonstrated. A further investigation of DEPcolloidal manipulation under the effects of electrothermal flow induced by Joule heatingof the applied electric field is conducted. A periodic structure of the electrothermal flowthat enhances DEP trapping is numerically simulated and experimentally validated.An acoustic method is investigated for continuous sample concentration in amicroscale device. Fast formation of particle streams focused at the pressure nodes isdemonstrated by using the long-range forces of the ultrasonic standing waves (USW).High frequency actuation suitable for miniaturization of devices is successfully appliedand the device performance and key parameters are explained.Further extension and integration of the technologies presented in thisdissertation will enable a chip scale platform for various chemical and biologicalapplications such as drug delivery, chemical analyses, point-of-care clinical diagnosis,biowarfare and biochemical agent detection/screening, and water quality control.
机译:微流体技术的最新进展已使用于生化分析的功能单元集成到称为Labon-a-Chip(LOC)的小型芯片上。然而,由于缺乏颗粒控制机制的清晰表征,有效地控制和控制悬浮在流体中的胶体颗粒仍然是一项艰巨的任务。本文的目的是开发利用交流电和声波来操纵胶体和生物颗粒的微流控技术和设备。领域。主要的电动势被解释为电场条件和材料特性的函数,并且该模型的参数实验验证是使用颗粒和生物物种进行的。使用理论工具作为设计电动系统的有效框架,开发了一种基于介电电泳(DEP)的微流体装置,用于从高电导率介质中捕获细菌孢子。利用具有定义良好的电场最小值的简单平面电极可以用作生物传感器集成的目标附着/检测位点,成功地证明了孢子图案表面的负DEP捕获。进一步研究了焦耳加热所施加电场引起的电热流对DEP胶体操纵的影响。通过数值模拟和实验验证了增强DEP捕集的电热流的周期性结构。研究了一种声学方法,用于在微型设备中连续采样。利用超声波驻波(USW)的远距离力证明了聚焦在压力节点处的粒子流的快速形成。成功应用了适用于设备小型化的高频驱动,并解释了设备性能和关键参数。集成本文提出的技术将为各种化学和生物学应用提供芯片规模的平台,例如药物输送,化学分析,现场护理临床诊断,生物战和生化试剂检测/筛选以及水质控制。

著录项

  • 作者

    Park Seungkyung;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号