首页> 外文OA文献 >Low Order Modeling of Seemingly Random Systems with Application to Stock Market Securities
【2h】

Low Order Modeling of Seemingly Random Systems with Application to Stock Market Securities

机译:半随机系统的低阶建模及其在证券市场中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Even simple observation of stock price graphs can reveal dominant patterns. In our work, we will refer to such re-occurring, dominant patterns as ?coherent structures?, a term borrowed from the theory of turbulence in fluid dynamics. Stock price performance exhibits coherent structures, which by definition make it non-random, although a price-versus-time graph might seem totally chaotic to the naked eye. A novel low-order modeling technique for systems that are seemingly random has been developed. Though stock market data is used for the formulation and verification of the technique, its application in diverse fields is verified. The dissertation discusses some of the salient features of the novel technique along with a dynamic system analogy. The technique reduces many of the significant limitations associated with traditional methods like Fourier analysis and digital filters. Application of the technique to a nonlinear dynamical system and meteorological data are presented as well as the primary application on stock market securities.
机译:即使简单地观察股价图也可以揭示主导模式。在我们的工作中,我们将这种重复出现的主导模式称为“相干结构”,该术语是从流体动力学湍流理论中借用的。股票价格表现出连贯的结构,从定义上讲,它是非随机的,尽管用价格与时间的关系图看似完全混乱。已经开发了一种看似随机的系统的新型低阶建模技术。尽管使用股票市场数据来制定和验证该技术,但仍可以验证其在各个领域的应用。本文讨论了该新技术的一些显着特征以及动态系统类比。该技术减少了与传统方法(例如傅立叶分析和数字滤波器)相关的许多重大限制。介绍了该技术在非线性动力学系统和气象数据中的应用以及在股票市场证券中的主要应用。

著录项

  • 作者

    Surendran Arun;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号