首页> 外文OA文献 >Computational fluid dynamics (CFD) simulations of aerosol in a u-shaped steam generator tube
【2h】

Computational fluid dynamics (CFD) simulations of aerosol in a u-shaped steam generator tube

机译:U形蒸汽发生器管中气溶胶的计算流体动力学(CFD)模拟

摘要

To quantify primary side aerosol retention, an Eulerian/Lagrangian approach wasused to investigate aerosol transport in a compressible, turbulent, adiabatic, internal,wall-bounded flow. The ARTIST experimental project (Phase I) served as the physicalmodel replicated for numerical simulation. Realizable k-? and standard k-? turbulencemodels were selected from the computational fluid dynamics (CFD) code, FLUENT, toprovide the Eulerian description of the gaseous phase.Flow field simulation results exhibited: a) onset of weak secondary flowaccelerated at bend entrance towards the inner wall; b) flow separation zonedevelopment on the convex wall that persisted from the point of onset; c) centrifugalforce concentrated high velocity flow in the direction of the concave wall; d) formationof vortices throughout the flow domain resulted from rotational (Dean-type) flow; e)weakened secondary flow assisted the formation of twin vortices in the outflow crosssection; and f) perturbations induced by the bend influenced flow recovery several pipe diameters upstream of the bend. These observations were consistent with those ofprevious investigators.The Lagrangian discrete random walk model, with and without turbulentdispersion, simulated the dispersed phase behavior, incorrectly. Accurate depositionpredictions in wall-bounded flow require modification of the Eddy Impaction Model(EIM). Thus, to circumvent shortcomings of the EIM, the Lagrangian time scale waschanged to a wall function and the root-mean-square (RMS) fluctuating velocities weremodified to account for the strong anisotropic nature of flow in the immediate vicinity ofthe wall (boundary layer). Subsequent computed trajectories suggest a precision thatranges from 0.1% to 0.7%, statistical sampling error. The aerodynamic mass mediandiameter (AMMD) at the inlet (5.5 ?m) was consistent with the ARTIST experimentalfindings. The geometric standard deviation (GSD) varied depending on the scenarioevaluated but ranged from 1.61 to 3.2. At the outlet, the computed AMMD (1.9 ?m) hadGSD between 1.12 and 2.76. Decontamination factors (DF), computed based ondeposition from trajectory calculations, were just over 3.5 for the bend and 4.4 at theoutlet. Computed DFs were consistent with expert elicitation cited in NUREG-1150 foraerosol retention in steam generators.
机译:为了量化一次侧气溶胶的滞留,使用了一种欧拉/拉格朗日方法来研究可压缩,湍流,绝热,内部,边界壁流中的气溶胶传输。 ARTIST实验项目(第一阶段)是为数值模拟复制的物理模型。可实现的k-?和标准k-?从计算流体动力学(CFD)代码FLUENT中选择湍流模型,以对气相进行欧拉描述。流场模拟结果显示:a)在弯道入口处向内壁加速的弱次流的发生; b)凸壁上从分离点开始的流动分离区发展; c)离心力沿凹壁方向集中高速流动; d)由于旋转(Dean型)流动而在整个流动域形成涡流; e)减弱的二次流有助于在出口横截面中形成双涡旋; f)弯头引起的扰动影响了弯头上游几个管径的流量恢复。这些观察结果与以前的研究者是一致的。拉格朗日离散随机游动模型在有或没有湍流弥散的情况下,都错误地模拟了弥散相的行为。壁面流动中的准确沉积预测需要修改涡流冲击模型(EIM)。因此,为了规避EIM的缺点,将拉格朗日时间标度更改为墙函数,并修改了均方根(RMS)波动速度,以说明墙(边界层)附近流动的强各向异性性质。 。随后的计算轨迹表明精度介于0.1%到0.7%之间,即统计采样误差。进气口的空气动力学质量中值直径(AMMD)(5.5 µm)与ARTIST的实验结果一致。几何标准偏差(GSD)取决于所评估的方案,但范围为1.61至3.2。在出口处,计算出的AMMD(1.9 µm)的GSD在1.12和2.76之间。根据轨迹计算中的沉积量计算得出的去污因子(DF)刚好超过3.5折弯,出口超过4.4。计算出的DFs与NUREG-1150中引用的专家引证相一致,蒸汽发生器中的气溶胶滞留性。

著录项

  • 作者

    Longmire Pamela;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号