首页> 外文OA文献 >Sparse bayesian step-filtering for high-throughput analysis of molecular machine dynamics
【2h】

Sparse bayesian step-filtering for high-throughput analysis of molecular machine dynamics

机译:稀疏贝叶斯阶跃滤波用于分子机器动力学的高通量分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nature has evolved many molecular machines such as kinesin, myosin, and the rotary flagellar motor powered by an ion current from the mitochondria. Direct observation of the step-like motion of these machines with time series from novel experimental assays has recently become possible. These time series are corrupted by molecular and experimental noise that requires removal, but classical signal processing is of limited use for recovering such step-like dynamics. This paper reports simple, novel Bayesian filters that are robust to step-like dynamics in noise, and introduce an L1-regularized, global filter whose sparse solution can be rapidly obtained by standard convex optimization methods. We show these techniques outperforming classical filters on simulated time series in terms of their ability to accurately recover the underlying step dynamics. To show the techniques in action, we extract step-like speed transitions from Rhodobacter sphaeroides flagellar motor time series. Code implementing these algorithms available from http://www.eng.ox.ac.uk/samp/members/max/software/
机译:大自然发展了许多分子机器,例如驱动蛋白,肌球蛋白和由线粒体产生的离子流驱动的旋转鞭毛马达。从新型实验方法中按时间序列直接观察这些机器的步进运动成为可能。这些时间序列因需要消除的分子和实验噪声而受到破坏,但是经典的信号处理在恢复此类阶梯状动力学方面用途有限。本文报告了简单,新颖的贝叶斯滤波器,该滤波器对噪声中的阶梯状动力学具有鲁棒性,并介绍了一种L1正则化全局滤波器,该滤波器的稀疏解可以通过标准凸优化方法快速获得。我们展示了这些技术在模拟时间序列方面的性能优于传统滤波器,因为它们能够准确地恢复潜在的阶跃动力学。为了展示实际的技术,我们从球形球形红细菌鞭毛运动时间序列中提取了类似阶梯的速度过渡。可以从http://www.eng.ox.ac.uk/samp/members/max/software/获得实现这些算法的代码

著录项

  • 作者

    Max A. Little; Nick S. Jones;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号