首页> 外文OA文献 >Carbon-driven Chemical Interactions between Alumina and Iron: A possible reaction pathway in Earth#x27;s interior
【2h】

Carbon-driven Chemical Interactions between Alumina and Iron: A possible reaction pathway in Earth#x27;s interior

机译:氧化铝和铁之间的碳驱动化学相互作用:地球内部可能的反应途径

摘要

Seismological and geochemical observations have revealed a complex structure for the earth's core-mantle boundary (CMB) region, with lateral and chemical heterogeneities. The presence of higher than expected concentrations of siderophile elements (Ni, Co, Pt etc) in the earth's mantle, iron enrichment of the lower mantle relative to the upper mantle, and a possible carbon flux from the core suggest the possibility of continual long-term exchange of materials between the core and the mantle. The chemical interactions of molten iron with complex mantle oxides and diffusion have been postulated as key mechanisms. A number of studies have been carried out on the reduction reactions taking into account the extreme conditions of high-temperature and high-pressure in earth's interior. These studies have, however, neglected to consider the influence of carbon on these reactions. The earth's metallic core is rich in carbon (~ 5 wt% C), and there is a growing evidence for the presence of carbon in the earth's mantle as well. Carbon can affect redox conditions through chemical interactions with oxygen, and is a critical element in determining the oxidation state of siderophile elements. Here we present a study of the interactions between liquid iron and alumina-carbon substrates at 1,823K in argon atmosphere, and report on the formation of a Fe-Al~0.25-0.5~ alloy at ambient pressure. Iron induced reduction of alumina in the absence of carbon, has been previously reported to occur only at pressures above 60 GPa and temperatures of 2,200K. Our results demonstrate that carbon enriched iron is capable of reducing alumina in regions of much lower pressures. These chemical reactions could provide an important mechanism for the reduction reactions occurring in earth's interior, and be responsible for far higher levels of heterogeneities than currently believed.
机译:地震和地球化学观测揭示了地球核心-地幔边界(CMB)区域的复杂结构,具有横向和化学非均质性。地球地幔中存在比预期浓度更高的嗜铁亲铁元素(Ni,Co,Pt等),下部地幔相对于上部地幔的铁富集以及来自岩心的可能碳通量表明持续不断的长粒化可能。核心和地幔之间的长期材料交换。推测铁水与复杂的地幔氧化物的化学相互作用和扩散是关键机制。考虑到地球内部高温和高压的极端条件,已经对还原反应进行了许多研究。然而,这些研究忽略了考虑碳对这些反应的影响。地球的金属核富含碳(约5 wt%C),并且越来越多的证据表明地幔中也存在碳。碳可以通过与氧气的化学相互作用来影响氧化还原条件,并且是确定嗜铁亲铁元素氧化态的关键元素。在这里,我们研究了在氩气环境下,液态铁与氧化铝-碳基体在1,823K之间的相互作用,并报道了在常压下Fe-Al〜0.25-0.5〜合金的形成。先前已经报道铁在不存在碳的情况下诱导氧化铝的还原仅在高于60 GPa的压力和2,200K的温度下发生。我们的结果表明,富碳铁能够在压力低得多的区域还原氧化铝。这些化学反应可以为发生在地球内部的还原反应提供重要的机制,并导致比目前认为的高得多的异质性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号