首页> 外文OA文献 >Detecting and overcoming systematic bias in high-throughput screening technologies: a comprehensive review of practical issues and methodological solutions
【2h】

Detecting and overcoming systematic bias in high-throughput screening technologies: a comprehensive review of practical issues and methodological solutions

机译:检测和克服高通量筛选技术中的系统偏见:对实际问题和方法学解决方案的全面回顾

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Significant efforts have been made recently to improve data throughput and data quality in screening technologies related to drug design. The modern pharmaceutical industry relies heavily on high-throughput screening (HTS) and high-content screening (HCS) technologies, which include small molecule, complementary DNA (cDNA) and RNA interference (RNAi) types of screening. Data generated by these screening technologies are subject to several environmental and procedural systematic biases which introduce errors into the hit identification process. We first review systematic biases typical of HTS and HCS screens. We highlight that study design issues and the way in which data are generated are crucial for providing unbiased screening results. Considering various data sets, including the publicly available ChemBank data, we assess the rates of systematic bias in experimental HTS by using plate-specific and assay-specific error detection tests. We describe main data normalization and correction techniques and introduce a general data pre-processing protocol. This protocol can be recommended for academic and industrial researchers involved in the analysis of current or next generation high-throughput screening data.
机译:最近,在与药物设计有关的筛选技术中,为提高数据吞吐量和数据质量做出了重大努力。现代制药行业高度依赖高通量筛选(HTS)和高含量筛选(HCS)技术,其中包括小分子,互补DNA(cDNA)和RNA干扰(RNAi)类型的筛选。这些筛选技术生成的数据会受到多种环境和程序系统偏差的影响,这些偏差会在匹配识别过程中引入错误。我们首先回顾一下HTS和HCS屏幕的典型系统偏差。我们强调指出,研究设计问题和数据生成方式对于提供公正的筛查结果至关重要。考虑到各种数据集,包括可公开获得的ChemBank数据,我们通过使用板特异性检测和特定于测定的错误检测测试来评估实验性HTS中的系统偏倚率。我们描述了主要的数据规范化和校正技术,并介绍了一种通用的数据预处理协议。该协议可推荐给参与当前或下一代高通量筛选数据分析的学术和工业研究人员。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号