首页> 外文OA文献 >Self exciting threshold auto-regressive approach for non-linear modeling of daily electricity prices in the selected regions
【2h】

Self exciting threshold auto-regressive approach for non-linear modeling of daily electricity prices in the selected regions

机译:自激励阈值自回归方法,用于所选区域的每日电价非线性建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is focused on the electricity market and electricity prices. The electricity sector is one of the keystrategic sectors of every economy and knowledge of demand, supply and prices is very important. Because of thefeatures occurring in the time series of electricity prices (i.e. high frequency, non-constant mean, autocorrelation,non-normal distribution, heteroscedasticity, seasonality, etc.), it is necessary to employ more sophisticated modelsfor the purposes of their modeling. The goal of this paper is to propose the empirical model for modeling dailyelectricity prices in three selected regions (California, North Europe and Austria). To exploit non-linearity, weapply the SETAR (Self Exciting Threshold Auto-Regressive) models that imply and distinct regimes in time seriesdynamics with potentially different parameters (and thus dynamics properties) of each regime. First, the mostappropriate SETAR model for modeling electricity prices at selected markets is developed; next, statisticalverification of each model is performed in accordance with Hansen (1997, 2000); finally, it is verified whether theproposed non-linear models give satisfactory results in the sense of data fitting and diagnostic checks.
机译:本文的重点是电力市场和电价。电力部门是每个经济体的关键战略部门之一,了解需求,供应和价格非常重要。由于电价的时间序列中存在特征(即高频,非恒定均值,自相关,非正态分布,异方差,季节性等),因此有必要采用更复杂的模型进行建模。本文的目的是提出一个对三个选定地区(加利福尼亚,北欧和奥地利)的每日电价进行建模的经验模型。为了利用非线性,我们应用SETAR(自激阈值自回归)模型,该模型隐含和区分时间序列动力学中的各个状态,每个状态可能具有不同的参数(并因此具有动力学特性)。首先,建立了最合适的SETAR模型,用于在选定市场上对电价建模。接下来,根据Hansen(1997,2000)对每个模型进行统计验证。最后,从数据拟合和诊断检查的意义上验证了所提出的非线性模型是否给出了令人满意的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号