首页> 外文OA文献 >Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens
【2h】

Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens

机译:独脚金内酯生物合成在进化上是保守的,受磷酸盐饥饿调节,并有助于抵抗苔藓中的植物致病真菌,physcomitrella专利

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In seed plants, strigolactones (SLs) regulate architecture and induce mycorrhizal symbiosis in response to environmental cues. SLs are formed by combined activity of the carotenoid cleavage dioxygenases (CCDs) 7 and 8 from 9-cis-β-carotene, leading to carlactone that is converted by cytochromes P450 (clade 711; MAX1 in Arabidopsis) into various SLs. As Physcomitrella patens possesses CCD7 and CCD8 homologs but lacks MAX1, we investigated if PpCCD7 together with PpCCD8 form carlactone and how deletion of these enzymes influences growth and interactions with the environment. We investigated the enzymatic activity of PpCCD7 and PpCCD8 in vitro, identified the formed products by high performance liquid chromatography (HPLC) and LC-MS, and generated and analysed ΔCCD7 and ΔCCD8 mutants. We defined enzymatic activity of PpCCD7 as a stereospecific 9-cis-CCD and PpCCD8 as a carlactone synthase. ΔCCD7 and ΔCCD8 lines showed enhanced caulonema growth, which was revertible by adding the SL analogue GR24 or carlactone. Wild-type (WT) exudates induced seed germination in Orobanche ramosa. This activity was increased upon phosphate starvation and abolished in exudates of both mutants. Furthermore, both mutants showed increased susceptibility to phytopathogenic fungi. Our study reveals the deep evolutionary conservation of SL biosynthesis, SL function, and its regulation by biotic and abiotic cues.
机译:在种子植物中,滴水酮(SLS)调节建筑,并促使菌根共生以应对环境提示。通过9-CIS-β-胡萝卜素的类胡萝卜素裂解二恶英(CCD)7和8的组合活性形成SLS,导致由细胞色素P450(Clade 711;拟南芥MAX1)转化为各种SLS的克拉内酮。随着Physcomitrella Patens拥有CCD7和CCD8同源物,但缺乏MAX1,我们研究了PPCCD7与PPCCD8组合癌克隆酮以及如何删除这些酶影响生长和与环境的相互作用。我们研究了体外PPCCD7和PPCCD8的酶活性,通过高效液相色谱(HPLC)和LC-MS鉴定成型产物,并产生和分析ΔCCD7和ΔCCD8突变体。我们将PPCCD7的酶活性定义为立体特异性9-CIS-CCD和PPCCD8作为克拉酮合成酶。 ΔCCD7和ΔCCD8线显示出增强的CaulOnema生长,通过添加SL类似物GR24或克隆物来可再助学。野生型(wt)渗出奥比丘斯拉乐诱导的种子萌发。在磷酸盐饥饿并废除在两个突变体的渗出物时,该活性增加。此外,两个突变体显示出对植物致病性真菌的易感性增加。我们的研究揭示了SL生物合成,SL功能的深度进化守恒,及其生物和非生物提示的调节。

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号