首页> 外文OA文献 >Biogeography-based optimisation with chaos
【2h】

Biogeography-based optimisation with chaos

机译:基于生物地理学的混沌优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The biogeography-based optimisation (BBO) algorithm is a novel evolutionary algorithm inspired by biogeography. Similarly, to other evolutionary algorithms, entrapment in local optima and slow convergence speed are two probable problems it encounters in solving challenging real problems. Due to the novelty of this algorithm, however, there is little in the literature regarding alleviating these two problems. Chaotic maps are one of the best methods to improve the performance of evolutionary algorithms in terms of both local optima avoidance and convergence speed. In this study, we utilise ten chaotic maps to enhance the performance of the BBO algorithm. The chaotic maps are employed to define selection, emigration, and mutation probabilities. The proposed chaotic BBO algorithms are benchmarked on ten test functions. The results demonstrate that the chaotic maps (especially Gauss/mouse map) are able to significantly boost the performance of BBO. In addition, the results show that the combination of chaotic selection and emigration operators results in the highest performance.
机译:基于生物地理学优化(BBO)算法是一种新的进化算法通过生物地理学的启发。同样,对于其他进化算法,滞留在局部最优和收敛速度慢是它在解决具有挑战性的实际问题遭遇两个可能的问题。由于该算法的新颖性,但是,很少有关于在缓解这两个问题的文献。混沌系统是提高进化算法在这两个局部最优避免和收敛速度方面的性能的最佳方法之一。在这项研究中,我们利用10混沌系统,以提高BBO算法的性能。在混沌系统被用来定义选择,移民,和变异概率。所提出的混沌BBO算法基准上十个测试功能。结果表明,在混沌系统(尤其是高斯/鼠标映射)能够显著提升BBO的性能。此外,该结果表明,混乱的选择和移民运营商的组合产生最高的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号