首页> 外文OA文献 >Ab initio study of the mechanism of carboxylic acids cross-ketonization on monoclinic zirconia via condensation to beta-keto acids followed by decarboxylation
【2h】

Ab initio study of the mechanism of carboxylic acids cross-ketonization on monoclinic zirconia via condensation to beta-keto acids followed by decarboxylation

机译:从头算研究羧酸交联酮化单斜氧化锆的机理,通过缩合成β-酮酸,然后脱羧

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Catalytic mechanism of acetic and isobutyric acids mixture conversion into two symmetrical and one cross-ketone product on monoclinic zirconia (111) surface was extensively modeled by Density Functional Theory for periodic structures. Several options were evaluated for each mechanistic step by calculating their reaction rate constants. The best option for each kinetically relevant step was chosen by matching calculated rates of reaction with experimental values.Four zirconium surface atoms define each catalytic site. The most favorable pathway includes condensation between surface carboxylates, one of which is enolized through alpha-hydrogen abstraction by lattice oxygen. Condensation of gas phase molecules with the enolized carboxylate on surface is less attainable.The kinetic scheme considers all steps being reversible, except for decarboxylation. The equilibrium constant of the enolization step and the rate constant of the condensation step define the global reaction rate for non-bulky acetic acid. For bulky isobutyric acid, decarboxylation step is added to the kinetic scheme as kinetically significant, while hydrocarbonate departure may also compete with the decarboxylation. Electronic and steric effect of alkyl substituents on the decarboxylation step is disclosed.The cross-selectivity is controlled by both condensation and decarboxylation steps. None of the mechanistic steps require metal oxide to be reducible/oxidizable.
机译:通过密度泛函理论进行周期性结构的密度泛函理论,广泛建模乙酸和异丁酸混合物转化为两个对称的和一个横酮产物的催化机制。通过计算反应速率常数来评估每个机械阶段的几种选择。通过将计算的反应速率与实验值匹配来选择每个动力学相关步骤的最佳选择。锆表面原子限定每个催化位点。最有利的途径包括表面羧酸盐之间的缩合,其中一种通过晶格氧通过α-氢抽取而驻扎。在表面上具有所雄化羧酸盐的气相分子的缩合不可达到。动力学方案考虑所有步骤,除脱羧外除外。烯化步骤的平衡常数和缩合步骤的速率常数限定了非体积乙酸的全局反应速率。对于庞大的异丁酸,将脱羧步骤加入动力学方案中作为动力学,而碳酸氢盐脱离也可以与脱羧剂竞争。公开了烷基取代基对脱羧步骤的电子和空间作用。通过缩合和脱羧步骤来控制交叉选择性。没有机械步骤需要金属氧化物可降低/可氧化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号