首页> 外文OA文献 >Multivariate spatial mapping of soil water holding capacity with spatially varying cross-correlations
【2h】

Multivariate spatial mapping of soil water holding capacity with spatially varying cross-correlations

机译:土壤持水量与空间互变相关的多元空间映射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Irrigation in agriculture mitigates the adverse effects of drought and improves crop production and yield. Still, water scarcity remains a persistent issue and water resources need to be used responsibly. To improve water use efficiency, precision irrigation is emerging as an approach where farmers can vary the application of irrigation according to within field variation in soil and topographic conditions. As a precursor, methods to characterize spatial variation of soil hydraulic properties is needed. One such property is soil water holding capacity (WHC). This analysis develops a Bayesian multivariate spatial model for predicting WHC across a field at various soil depths using sparse WHC observations and covariates such as soil electrical conductivity. To capture spatially-varying cross correlations in an efficient manner, we propose a novel conditional specification of a multivariate Gaussian process with spatially-varying coefficients. Because data is already sparse, our analysis fully utilizes incomplete observations by imputing missing values that we treat as not missing at random. Additionally, due to the high cost of measuring WHC, we use a multivariate integrated mean square error criterion to choose a new observation location that, after sampling, will result in the least predictive uncertainty across the entire field.
机译:农业灌溉减轻了干旱的不利影响,提高了作物产量和产量。仍然,水资源稀缺仍然是一个持久的问题,水资源需要负责任地使用。为提高水利用效率,精密灌溉作为一种方法,作为农民可以根据土壤和地形条件的田间变化在田间变化中改变灌溉的应用。作为前体,需要表征土壤液压性能的空间变化的方法。其中一种特性是土壤含水量(WHC)。该分析开发了一种贝叶斯多变量空间模型,用于预测使用稀疏的WHC观察和变协变量在各种土壤深度处穿过各种土壤深度的田间的WHC。为了以有效的方式捕获空间改变的交叉相关,我们提出了一种具有空间变化系数的多变量高斯过程的新颖的条件规范。因为数据已经稀疏,我们的分析通过抵御缺失的值,因为我们将缺少的值抵消随机缺少时,完全利用了不完整的观察。此外,由于测量WHC的高成本,我们使用多变量集成均方误差标准来选择新的观察位置,即在采样后,将导致整个领域的最不预测性的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号