首页> 外文OA文献 >Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems
【2h】

Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems

机译:预测的大气氮沉降空间分布的变化及其对陆地生态系统碳吸收的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Widespread mobilization of nitrogen into the atmosphere from industry, agriculture, and biomass burning and its subsequent deposition have the potential to alleviate nitrogen limitation of productivity in terrestrial ecosystems, and may contribute to enhanced terrestrial carbon uptake. To evaluate the importance of the spatial distribution of nitrogen deposition for carbon uptake and to better quantify its magnitude and uncertainty NOy-N deposition fields from five different three-dimensional chemical models, GCTM, GRANTOUR, IMAGES, MOGUNTIA, and ECHAM were used to drive NDEP, a perturbation model of terrestrial carbon uptake. Differences in atmospheric sources of NOx-N, transport, resolution, and representation of chemistry, contribute to the distinct spatial patterns of nitrogen deposition on the global land surface; these differences lead to distinct patterns of carbon uptake that vary between 0.7 and 1.3 Gt C yr−1 globally. Less than 10% of the nitrogen was deposited on forests which were most able to respond with increased carbon storage because of the wide C:N ratio of wood as well as its long lifetime. Addition of NHx-N to NOy-N deposition, increased global terrestrial carbon storage to between 1.5 and 2.0 Gt C yr−1, while the “missing terrestrial sink” is quite similar in magnitude. Thus global air pollution appears to be an important influence on the global carbon cycle. If N fertilization of the terrestrial biosphere accounts for the “missing” C sink or a substantial portion of it, we would expect significant reductions in its magnitude over the next century as terrestrial ecosystems become N saturated and O3 pollution expands.
机译:广泛传播从工业,农业和生物质燃烧的大气中的氮气流入气氛,其随后的沉积具有缓解陆地生态系统生产率的氮气限制,并且可能有助于增强陆地碳吸收。为了评估碳吸收的氮沉积空间分布的重要性,并更好地量化了五种不同的三维化学模型,GCTM,授予,图像,Moguntia和EcoM的幅度和不确定的诺伊-N沉积场,并用于驱动NDEP,陆地碳摄取的扰动模型。 NOx-N的大气来源的差异,化学的运输,分辨率和表示,有助于全球陆地表面上的氮沉积的明显空间模式;这些差异导致不同的碳吸收模式,在全球范围内变化0.7和1.3gt C YR-1。在森林上沉积少于10%的氮,因为宽的C:N比的木材和长寿命,碳储存量增加的森林中最含量的森林。添加NOY-N沉积的NHX-N,将全球陆地碳储存增加到1.5和2.0gt C YR-1之间,而“缺失的陆地水槽”的幅度非常相似。因此,全球空气污染似乎对全球碳循环产生了重要影响。如果陆地生物圈的胁迫占“缺失”C的水槽或其中大部分,我们将期望在下个世纪随着陆地生态系统成为N饱和和O3污染扩大而在下个世纪的重大减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号